
ThinkGear SDK for .NET: Development
Guide and API Reference
December 20, 2012

e NeuroSky® product families consist of hardware and
software components for simple integration of this biosensor
technology into consumer and industrial end-applications.
All products are designed andmanufactured tomeet consumer
thresholds for quality, pricing, and feature sets. NeuroSky
sets itself apart by providing building block component
solutions that offer friendly synergies with related and complemen-
tary technological solutions.

NOWARRANTIES: THENEUROSKYPRODUCTFAMILIES
AND RELATED DOCUMENTATION IS PROVIDED "AS
IS"WITHOUTANY EXPRESSOR IMPLIEDWARRANTY
OFANYKINDINCLUDINGWARRANTIESOFMERCHANTABIL-
ITY,NONINFRINGEMENTOF INTELLECTUALPROPERTY,
INCLUDINGPATENTS,COPYRIGHTSOROTHERWISE,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENTSHALLNEUROSKYOR ITS SUPPLIERSBELIABLE
FORANYDAMAGESWHATSOEVER (INCLUDING,WITHOUT
LIMITATION,DAMAGESFORLOSSOFPROFITS, BUSINESS
INTERRUPTION,COSTOFREPLACEMENTGOODSOR
LOSSOFORDAMAGETOINFORMATION)ARISINGOUT
OFTHEUSEOFOR INABILITYTOUSETHENEUROSKY
PRODUCTS ORDOCUMENTATION PROVIDED, EVEN
IF NEUROSKY HAS BEEN ADVISED OF THE POSSIBIL-
ITYOFSUCHDAMAGES. , SOMEOFTHEABOVELIMITATIONS
MAY NOT APPLY TO YOU BECAUSE SOME JURISDIC-
TIONS PROHIBIT THE EXCLUSION OR LIMITATION
OFLIABILITYFORCONSEQUENTIALOR INCIDENTAL
DAMAGES.

USAGE OF THE NEUROSKY PRODUCTS IS SUBJECT
OF AN END-USER LICENSE AGREEMENT.

“Made for iPod,” “Made for iPhone,” and “Made for
iPad”mean that an electronic accessory has been designed
to connect specifically to iPod, iPhone, or iPad, respectively,
and has been certified by the developer to meet Apple
performance standards. Apple is not responsible for
the operation of this device or its compliancewith safety
and regulatory standards. Please note that the use of
this accessory with iPod, iPhone, or iPad may affect
wireless performance.

Contents

Introduction 4
inkGear SDK for .NET Contents . 4
Supported inkGear Hardware . 4

Your First Project: HelloEEG console 6

Developing Your OwninkGear-enabled Apps for .NET 8
Preparing Your .NET Project . 8
e inkGear.dll . 8
e NeuroSky.inkGear Namespace . 8
Using the NeuroSky.inkGear Namespace . 8
Events . 10

Tips on using inkGear.NET . 10

API Reference 12
Connector class . 12

Methods . 12
Events . 13

TGParser Class . 13
Methods . 13

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.
3

http://www.neurosky.com

Chapter 1

Introduction

is guide will teach you how to use NeuroSky'sinkGear SDK for .NET to write Windows apps
that can utilize bio-signal data from NeuroSky's inkGear family of bio-sensors (which includes the
CardioChip family of products). is will enable your Windows apps to receive and use bio-signal
data such as EEG and ECG/EKG acquired from NeuroSky's sensor hardware.

is guide (and the entire inkGear SDK for .NET for that matter) is intended for programmers
who are already familiar with standard .NET development using Microsoft Visual Studio. If you are
not already familiar with developing for .NET, please ërst visit http://www.microsoft.com/net to learn
how to set up your .NET development environment and create typical .NET apps.

If you are already familiar with creating typical .NET apps, then the next step is to make sure you have
downloaded NeuroSky's inkGear SDK for .NET. Chances are, if you're reading this document,
then you already have it.

ThinkGear SDK for .NET Contents

• inkGear SDK for .NET: Development Guide and API Reference (this document)

• inkGear.dll library

• supporting libraries: NLlog.dll/conëg/xml, JayrockJson.dll

• HelloEEG Sample Project

• TG-HelloEEG.exe a reference build of the HelloEEG sample project

You'll ënd the "inkGear.dll" in the libs/ folder, and the "HelloEEG Sample Project" in the Sample
Projects/HelloEEG folder.

Supported ThinkGear Hardware

e inkGear SDK for .NET must be used with a inkGear-compatible hardware sensor device.
e following inkGear-compatible hardware devices are currently supported:

• MindWave Mobile

• MindWave (RF)

• MindBand

• MindSet

• inkCap

• CardioChip Starter Kit Unit

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.
4

http://www.microsoft.com/net
http://www.neurosky.com

Chapter 1 – Introduction

• BrainAthlete

• MindTune

• TGAM module

• CardioChip BMD101 module

• TGAT ASIC

• BMD101 ASIC

Important: Before using any Windows app that uses the TG-SDK for .NET, make sure you have
paired the inkGear sensor hardware to your Windows machine by carefully following the instruc-
tions in the User Manual that came with each inkGear hardware device! e inkGear sensor
must appear in your Windows machine's list of COM ports in Device Manager.

Supported ThinkGear Hardware
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

5

http://www.neurosky.com

Chapter 2

Your First Project: HelloEEG
console
HelloEEG is a sample project we've included in the inkGear SDK for .NET that demonstrates
how to setup, connect, and handle data to a inkGear device. Add the project to your Visual Studio
by following these steps:

1. from the Visual Studio Toolbar, select File—> New —> Project From Existing Code…

2. In the New Project From Existing Code wizard, select the project type of "Visual C#"

3. click the "Next >" button

4. browse to the place you have expanded the SDK ëles. ("inkGear SDK for .NET\Sample
Projects\HelloEEG")

5. check the box to include subfolders.

6. enter a name of "HelloEEG"

7. choose Output type of "Console Application"

8. click the "Finish" button

9. at the Toolbar select Project —> HelloEEG Properties…

10. change the Assembly name to HelloEEG

11. set the Target framework to ".NET Framework 3.5"

12. if you are asked to Conërm the Framework change, click "Yes"

13. at the Toolbar select View —> Solution Explorer

14. in the Solution Explorer pane select and expand the "References" section

15. if you see a exclamation mark warning on "Microsoft.CSharp"

16. select it and right click, and remove the reference to "Microsoft.CSharp"

17. select the "References" section, right click, pick "Add Reference.."

18. choose the browse TAB, choose the folder "neurosky" and then pick "inkGear.dll"

19. at the Toolbar select Build —> Build Solution

20. if there are no errors, you should be able to browse the code, make modiëcations, compile, and
run the app just like any typical .NET app.

Note: ese steps have been tested with Visual Studio 2010, if yours is different you may have to
adapt these instructions.

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.
6

http://www.neurosky.com

Chapter 2 – Your First Project: HelloEEG console

Note: e TG-HelloEEG.exe reference program is built from these same sources and with the same
process. It is slightly different in that the Microsoft ILMerge program has been used to incorporate
the dlls from the /neuosky folder into the .exe so that it can function in a more standalone way.

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.
7

http://www.neurosky.com

Chapter 3

Developing Your Own
ThinkGear-enabled Apps for .NET

Preparing Your .NET Project

einkGear .NET SDK's API is made available to your application via the NeuroSky.ThinkGear
namespace. e inkGear.dll gives your .NET application access to the NeuroSky.ThinkGear
namespace.

The ThinkGear.dll

To start with, add theinkGear.dll ële to your .NET application's project workspace. einkGear.dll
is a C# .NET library, and can only be used as part of .NET projects (it will not work in native projects).
is .dll contains the NeuroSky.ThinkGear namespace.

The NeuroSky.ThinkGear Namespace

einkGear .NET SDK's API is made available to your application via the NeuroSky.ThinkGear
namespace. Once you have added the inkGear.dll ële to your project, you can then add the fol-
lowing code to the top of your application to access the NeuroSky.ThinkGear namespace:

using NeuroSky.ThinkGear;

Using the NeuroSky.ThinkGear Namespace

e NeuroSky.ThinkGear namespace consists of two classes:

• Connector - Connects to the computer's serial COM port and reads in the port's serial stream
of data as DataRowArrays.

• TGParser - Parses a DataRowArray into recognizable inkGear Data Types that your applica-
tion can use.

To use the classes, ërst declare a Connector instance and initialize it:

private Connector connector;
connector = new Connector();

Next, create EventHandlers to handle each type of Connector Event, and link those handlers to the
Connector events.

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.
8

http://www.neurosky.com

Chapter 3 – Developing Your Own ThinkGear-enabled Apps for .NET

connector.DeviceConnected += new EventHandler(OnDeviceConnected);
connector.DeviceFound += new EventHandler(OnDeviceFound);
connector.DeviceNotFound += new EventHandler(OnDeviceNotFound);
connector.DeviceConnectFail += new EventHandler(OnDeviceNotFound);
connector.DeviceDisconnected += new EventHandler(OnDeviceDisconnected);
connector.DeviceValidating += new EventHandler(OnDeviceValidating);

In the handler for the DeviceConnected event, you should create another EventHandler to handle
DataReceived events from the Device, like this:

void OnDeviceConnected(object sender, EventArgs e) {

Connector.DeviceEventArgs deviceEventArgs = (Connector.DeviceEventArgs)e;
Console.WriteLine("New Headset Created." + deviceEventArgs.Device.DevicePortName);

deviceEventArgs.Device.DataReceived += new EventHandler(OnDataReceived);
}

Now, whenever data is received from the device, the DataReceived handler will process that data.
Here is an example OnDeviceReceived() that shows how it can do this, using a TGParser to parse
the DataRow[]:

void OnDataReceived(object sender, EventArgs e){

/* Cast the event sender as a Device object, and e as the Device's DataEventArgs */
Device d = (Device)sender;
Device.DataEventArgs de = (Device.DataEventArgs)e;

/* Create a TGParser to parse the Device's DataRowArray[] */
TGParser tgParser = new TGParser();
tgParser.Read(de.DataRowArray);

/* Loop through parsed data TGParser for its parsed data... */
for(int i=0; i<tgParser.ParsedData.Length; i++) {

// See the Data Types documentation for valid keys such
// as "Raw", "PoorSignal", "Attention", etc.

if(tgParser.ParsedData[i].ContainsKey("Raw")){
Console.WriteLine("Raw Value:" + tgParser.ParsedData[i]["Raw"]);

}

if(tgParser.ParsedData[i].ContainsKey("PoorSignal")){
Console.WriteLine("PQ Value:" + tgParser.ParsedData[i]["PoorSignal"]);

}

if(tgParser.ParsedData[i].ContainsKey("Attention")) {
Console.WriteLine("Att Value:" + tgParser.ParsedData[i]["Attention"]);

}

if(tgParser.ParsedData[i].ContainsKey("Meditation")) {
Console.WriteLine("Med Value:" + tgParser.ParsedData[i]["Meditation"]);

}

if(tgParser.ParsedData[i].ContainsKey("MindWandering")) {
Console.WriteLine("MindWandering Level:" + tgParser.ParsedData[i]["MindWandering"]);

}

Using the NeuroSky.ThinkGear Namespace
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

9

http://www.neurosky.com

Chapter 3 – Developing Your Own ThinkGear-enabled Apps for .NET

}
}

Once you have the handlers set up as described above, you can have your Connector actually connect
to a device/headset/COM port by using one of the Connect methods described in Connect to a device
below. If the portName is valid and the connection is successful, then your OnDataReceived() method
will automatically be called and executed whenever data arrives from the headset.

Before exiting, your application must close the Connector's open connections by calling the Con-
nector's close() method.

connector.close();

If close() is not called on an open connection, and that connection's process is still alive (i.e. a
background thread, or a process that only closed the GUI window without terminating the process
itself), then the headset will still be connected to the process, and no other process will be able to
connect to the headset until it is disconnected.

Events

If you choose to connect by stating a speciëc COM port, it will take the following steps:

1. connector.Connect(portName);

2. connector.Connect in turn validates the COM port. So the DeviceValidating event is triggered

3. if the COM port was valid, it connects to the device. e DeviceFound event is never triggered

4. if the COM port was invalid, the DeviceNotFound event is triggered.

If you choose to connect by using the AUTO approach, it will take the following steps:

1. connector.Find();

2. if it is able to ënd a COM port with valid inkGear Packets, it triggers DeviceFound. Other-
wise, the DeviceNotFound event is triggered

3. the OnDeviceFound method in turn calls connector.Connect(tempPortName); where temp-
PortName is the valid COM port. is in turn calls DeviceValidating.

4. if the COM port was valid, it connects to the device.

5. if the COM port was invalid, the DeviceNotFound event is triggered.

Tips on using ThinkGear.NET
• In order to connect quickly, your application should always remember across sessions the last
COM portName that was able to successfully connect, and try to connect to that same portName
ërst the next time a connection attempt is made. If that remembered portName is no longer
valid or unable to connect, then you can use ConnectScan(string portName)method to
ënd another valid portName.

• If an unexpected disconnection occurs, your application should try to reconnect automatically
and prompt the user to check their headset device for the following:

Events
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

10

http://www.neurosky.com

Chapter 3 – Developing Your Own ThinkGear-enabled Apps for .NET

– Battery is properly inserted into the headset device, and has sufficient charge (or try a new
battery)

– Headset device is turned on

– Headset device is properly paired in Bluetooth settings

– Headset device is within range of the Bluetooth receiver (within 10m unobstructed)

Events
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

11

http://www.neurosky.com

Chapter 4

API Reference

Connector class

Methods
Connect to a device

void Connect(string portName) Attempts to open a connection with the port name speciëed by
portName. Calling this method results in one of two events being broadcasted:

• DeviceConnected - A connection was successfully opened on portName

• DeviceConnectFail - e connection attempt was unsuccessful

void ConnectScan() Attempts to open a connection to the ërst Device seen by the Connector.
Calling this method results in one of two events being broadcasted:

• DeviceConnected - A connection was successfully opened on portName

• DeviceConnectFail - e connection attempt was unsuccessful

void ConnectScan(string portName) Same as ConnectScan but scans the port speciëed by port-
Name ërst. Calling this method results in one of two events being broadcasted:

• DeviceConnected - A connection was successfully opened on portName

• DeviceConnectFail - e connection attempt was unsuccessful

Disconnect from a device

void Disconnect() Closes all open connections. Calling this method will result in the following
event being broadcasted for each open device:

• DeviceDisconnected - e device was disconnected

voidDisconnect(Connection connection) Closes a speciëc Connection speciëed by connection.
Calling this method will result in the following event being broadcasted for a speciëc open device:

• DeviceDisconnected - e device was disconnected

void Disconnect(Device device) Closes a speciëc Device speciëed by device. Calling this method
will result in the following event being broadcasted for a speciëc open device:

• DeviceDisconnected - e device was disconnected

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.
12

http://www.neurosky.com

Chapter 4 – API Reference

Send bytes to a device

void Send(string portName, byte[] bytesToSend) Sends an array of bytes to a speciëc port

Events
DeviceFound Occurs when a inkGear device is found. is is where the application chooses to
connect to that port or not.

DeviceNotFound Occurs when a inkGear device could not be found. is is usually where the
application displays an error that it did not ënd any device.

DeviceValidating Occurs right before the connector attempts a serial port. Mainly used to notify
the GUI which port it is trying to connect.

DeviceConnected Occurs when a inkGear device is connected. is is where the application
links the OnDataReceived for that device.

DeviceConnectFail Occurs when the Connector fails to connect to that port speciëed.

DeviceDisconnected Occurs when the Connector disconnects from a inkGear device.

TGParser Class

Methods
Dictionary<string, double>[] Read(DataRow[] dataRow) Parses the raw headset data in dataRow
and returns a dictionary of usable data. It also stores the dictionary in the ParsedData property.

When connected to a MindSet, MindWave, or MindWave Mobile headset, the Read() method can
return the following standard keys in its dictionary:

TGParser Class
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

13

http://www.neurosky.com

Chapter 4 – API Reference

Key Description Data Type
Time TimeStamps of packet received double
Raw Raw EEG data short
EegPowerDelta Delta Power uint
EegPowereta eta Power uint
EegPowerAlpha1 Low Alpha Power uint
EegPowerAlpha2 High Alpha Power uint
EegPowerBeta1 Low Beta Power uint
EegPowerBeta2 High Beta Power uint
EegPowerGamma1 Low Gamma Power uint
EegPowerGamma2 High Gamma Power uint
Attention Attention eSense double
Meditation Meditation eSense double
PoorSignal Poor Signal double
BlinkStrength Strength of detected blink. e

Blink Strength ranges from 1 (small
blink) to 255 (large blink). Unless
a blink occurred, nothing will be re-
turned. Blinks are only calculated if
PoorSignal is less than 51.

uint

MindWandering Mind Wandering Level. e Mind
Wandering Level ranges from 1 (low
MindWandering) to 10 (highMind
Wandering). e Mind Wandering
algorithm updates once every 0.5
seconds, assuming PoorSignal is less
than 51. If PoorSignal is above 51,
nothing is returned.

double

When connected to a inkCap, the Read() method can return the following keys in its dictionary:

Key Description Data Type
Time TimeStamps of packet received double
RawCh1 EEG Channel 1 short
RawCh2 EEG Channel 2 short
RawCh3 EEG Channel 3 short
RawCh4 EEG Channel 4 short
RawCh5 EEG Channel 5 short
RawCh6 EEG Channel 6 short
RawCh7 EEG Channel 7 short
RawCh8 EEG Channel 8 short

When connected to a BMD10X device, the Read() method can return the following keys in its

TGParser Class
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

14

http://www.neurosky.com

Chapter 4 – API Reference

dictionary:

Key Description Data Type
Raw EEG short
HeartRate Heart rate (BPM) double
RrInt Time between detected heart beats in milliseconds uint

Note: As each packet is received in the inkGear DLL, the associated timestamp is also recorded

TGParser Class
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

15

http://www.neurosky.com

	Introduction
	ThinkGear SDK for .NET Contents
	Supported ThinkGear Hardware

	Your First Project: HelloEEG console
	Developing Your Own ThinkGear-enabled Apps for .NET
	Preparing Your .NET Project
	The ThinkGear.dll
	The NeuroSky.ThinkGear Namespace
	Using the NeuroSky.ThinkGear Namespace
	Events
	Tips on using ThinkGear.NET

	API Reference
	Connector class
	Methods
	Events

	TGParser Class
	Methods

