ThinkGear SDK for .NET: Development
Guide and API Reference

December 20, 2012

NeuraoSky

Brain-Computer Interface Technologies

The NeuroSky® product families consist of hardware and
software components for simple integration of this biosensor
technology into consumer and industrial end-applications.

All products are designed and manufactured to meet consumer
thresholds for quality, pricing, and feature sets. NeuroSky

sets itself apart by providing building block component
solutions that offer friendly synergies with related and complemen-
tary technological solutions.

NO WARRANTIES: THE NEUROSKY PRODUCT FAMILIES

AND RELATED DOCUMENTATION IS PROVIDED "AS

IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY
OFANY KIND INCLUDING WARRANTIES OF MERCHANTABIL-
ITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY,
INCLUDING PATENTS, COPYRIGHTS OR OTHERWISE,

OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO

EVENT SHALL NEUROSKY ORITS SUPPLIERS BE LIABLE

FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, COST OF REPLACEMENT GOODS OR

LOSS OF OR DAMAGE TO INFORMATION) ARISING OUT

OF THE USE OF ORINABILITY TO USE THE NEUROSKY
PRODUCTS OR DOCUMENTATION PROVIDED, EVEN

IF NEUROSKY HAS BEEN ADVISED OF THE POSSIBIL-

ITY OF SUCH DAMAGES. , SOME OF THE ABOVE LIMITATIONS
MAY NOT APPLY TO YOU BECAUSE SOME JURISDIC-

TIONS PROHIBIT THE EXCLUSION OR LIMITATION

OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES.

USAGE OF THE NEUROSKY PRODUCTS IS SUBJECT
OF AN END-USER LICENSE AGREEMENT.

“Made for iPod,” “Made for iPhone,” and “Made for
iPad” mean that an electronic accessory has been designed
to connect specifically to iPod, iPhone, or iPad, respectively,
and has been certified by the developer to meet Apple
performance standards. Apple is not responsible for

the operation of this device or its compliance with safety
and regulatory standards. Please note that the use of
this accessory with iPod, iPhone, or iPad may affect
wireless performance.

Contents

Introduction 4
ThinkGear SDK for NET Contentst ..., 4
Supported ThinkGear Hardware o L ... 4

Your First Project: HelloEEG console 6

Developing Your Own ThinkGear-enabled Apps for .NET 8
Preparing Your NET Projecto 8
The ThinkGear.dIl o 8
The NeuroSky. ThinkGear Namespace i i i oot .. 8
Using the NeuroSky. ThinkGear Namespace 8
Events L 10

Tips on using ThinkGear NET 10

API Reference 12

Connectorclass o e 12
Methods e 12
Events. o o e 13

TGParser Class o o oot e 13
Methods o 13

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 1

Introduction

This guide will teach you how to use NeuroSky's ThinkGear SDK for .NET to write Windows apps
that can utilize bio-signal data from NeuroSky's ThinkGear family of bio-sensors (which includes the
CardioChip family of products). This will enable your Windows apps to receive and use bio-signal
data such as EEG and ECG/EKG acquired from NeuroSky's sensor hardware.

This guide (and the entire ThinkGear SDK for .NET for that matter) is intended for programmers
who are already familiar with standard .NET development using Microsoft Visual Studio. If you are
not already familiar with developing for .NET, please first visit http://www.microsoft.com/net to learn
how to set up your .NET development environment and create typical NET apps.

If you are already familiar with creating typical NET apps, then the next step is to make sure you have
downloaded NeuroSky's ThinkGear SDK for .NET. Chances are, if you're reading this document,
then you already have it.

ThinkGear SDK for .NET Contents

* ThinkGear SDK for .NET: Development Guide and API Reference (this document)
* ThinkGear.dll library

* supporting libraries: NLlog.dll/config/xml, Jayrock]son.dll

* HelloEEG Sample Project

* TG-HelloEEG.exe a reference build of the HelloEEG sample project

You'll find the "ThinkGear.dll" in the 11 bs/ folder, and the "HelloEEG Sample Project” in the sample
Projects/HelloEEG folder.

Supported ThinkGear Hardware

The ThinkGear SDK for NET must be used with a ThinkGear-compatible hardware sensor device.
The following ThinkGear-compatible hardware devices are currently supported:

* MindWave Mobile
MindWave (RF)

MindBand

MindSet

ThinkCap

CardioChip Starter Kit Unit

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.microsoft.com/net
http://www.neurosky.com

Chapter 1 - Introduction

BrainAthlete

MindTune

TGAM module

CardioChip BMD101 module
* TGAT ASIC

* BMDI101 ASIC

Important: Before using any Windows app that uses the TG-SDK for .NET, make sure you have
paired the ThinkGear sensor hardware to your Windows machine by carefully following the instruc-
tions in the User Manual that came with each ThinkGear hardware device! The ThinkGear sensor
must appear in your Windows machine's list of COM ports in Device Manager.

Supported ThinkGear Hardware 5
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 2

Your First Project: HelloEEG

console

HelloEEG is a sample project we've included in the ThinkGear SDK for .NET that demonstrates
how to setup, connect, and handle data to a ThinkGear device. Add the project to your Visual Studio
by following these steps:

1.

Y ® N oW

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

from the Visual Studio Toolbar, select File —> New —> Project From Existing Code...

2. In the New Project From Existing Code wizard, select the project type of "Visual C#"
3.
4. browse to the place you have expanded the SDK files. ("ThinkGear SDK for .NET\Sample

click the "Next >" button

Projects\HelloEEG")

check the box to include subfolders.

enter a name of "HelloEEG"

choose Output type of "Console Application”

click the "Finish" button

at the Toolbar select Project —> HelloEEG Properties. ..

change the Assembly name to HelloEEG

set the Target framework to ".NET Framework 3.5"

if you are asked to Confirm the Framework change, click "Yes"

at the Toolbar select View —> Solution Explorer

in the Solution Explorer pane select and expand the "References” section
if you see a exclamation mark warning on "Microsoft. CSharp"

select it and right click, and remove the reference to "Microsoft.CSharp”
select the "References" section, right click, pick "Add Reference.."
choose the browse TAB, choose the folder "neurosky” and then pick "ThinkGear.dll"
at the Toolbar select Build —> Build Solution

if there are no errors, you should be able to browse the code, make modifications, compile, and
run the app just like any typical NET app.

Note: These steps have been tested with Visual Studio 2010, if yours is different you may have to
adapt these instructions.

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 2 — Your First Project: HelloEEG console

Note: The TG-HelloEEG.exe reference program is built from these same sources and with the same
process. It is slightly different in that the Microsoft ILMerge program has been used to incorporate
the dlls from the /neuosky folder into the .exe so that it can function in a more standalone way.

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 3

Developing Your Own
ThinkGear-enabled Apps for .NET

Preparing Your .NET Project

The ThinkGear .NET SDK's API is made available to your application via the Neurosky. ThinkGear
namespace. The ThinkGear.dll gives your .NET application access to the Neurosky. ThinkGear
namespace.

The ThinkGear.dll

To start with, add the ThinkGear.dll file to your .NET application's project workspace. The ThinkGear.dll
isa C# .NET library, and can only be used as part of NET projects (it will not work in native projects).
This .dll contains the NeurosSky. ThinkGear namespace.

The NeuroSky.ThinkGear Namespace

The ThinkGear .NET SDK's API is made available to your application via the Neurosky. ThinkGear
namespace. Once you have added the ThinkGear.dll file to your project, you can then add the fol-
lowing code to the top of your application to access the Neurosky. ThinkGear namespace:

using NeuroSky. ThinkGear;

Using the NeuroSky.ThinkGear Namespace

The NeuroSky. ThinkGear namespace consists of two classes:

* Connector - Connects to the computer's serial COM port and reads in the port's serial stream
of data as DataRowArrays.

* TGParser - Parses a DataRowArray into recognizable ThinkGear Data Types that your applica-
tion can use.

To use the classes, first declare a Connector instance and initialize it:

private Connector connector;
connector = new Connector();

Next, create EventHandlers to handle each type of Connector Event, and link those handlers to the
Connector events.

December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 3 — Developing Your Own ThinkGear-enabled Apps for .NET

’

connector. DeviceDisconnected += new EventHandler (OnDeviceDisconnected);

’

connector. DeviceConnected += new EventHandler (OnDeviceConnected)
connector. DeviceFound += new EventHandler (OnDeviceFound)
connector. DeviceNotFound += new EventHandler (OnDeviceNotFound)
connector. DeviceConnectFail += new EventHandler (OnDeviceNotFound)
()
()

connector. DeviceValidating += new EventHandler (OnDeviceValidating

In the handler for the DeviceConnected event, you should create another EventHandler to handle
DataReceived events from the Device, like this:

void OnDeviceConnected(object sender, EventArgs e) {

Connector. DeviceEventArgs deviceEventArgs = (Connector.DeviceEventArgs)e;
Console. WriteLine("New Headset Created." + deviceEventArgs. Device. DevicePortName);

deviceEventArgs. Device. DataReceived += new EventHandler(OnDataReceived);

Now, whenever data is received from the device, the DataReceived handler will process that data.
Here is an example OnDeviceReceived() that shows how it can do this, using a TGParser to parse
theDataRow[h

void OnDataReceived(object sender, EventArgs e){
/* Cast the event sender as a Device object, and e as the Device's DataEventArgs */
Device d = (Device)sender;
Device. DataEventArgs de = (Device.DataEventArgs)e;
/* Create a TGParser to parse the Device's DataRowArray[] */
TGParser tgParser = new TGParser();

tgParser. Read(de. DataRowArray);

/* Loop through parsed data TGParser for its parsed data... */
for(int i=0; i<tgParser.ParsedData. Length; i++) {

// See the Data Types documentation for valid keys such
// as "Raw", "PoorSignal", "Attention", etc.

if(tgParser. ParsedDatal i]. ContainsKey ("Raw")){
Console. WriteLine("Raw Value:" + tgParser.ParsedDatal i]["Raw"]);

if(tgParser. ParsedDatal i]. ContainsKey ("PoorSignal")) {

Console. WriteLine("PQ Value:" + tgParser.ParsedDatal i]["PoorSignal"]);
}
if(tgParser. ParsedDatal i]. ContainsKey ("Attention")) {

Console. WriteLine("Att Value:" + tgParser.ParsedDatal i]["Attention"]);

if(tgParser. ParsedDatal i]. ContainsKey("Meditation")) {
Console. WriteLine("Med Value:" + tgParser.ParsedDatal i]["Meditation"]);

if(tgParser. ParsedDatal i]. ContainsKey ("MindWandering”)) {
Console. WriteLine("MindWandering Level:" + tgParser. ParsedDatal i]["MindWandering"]

Using the NeuroSky.ThinkGear Namespace 9
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Events

Chapter 3 — Developing Your Own ThinkGear-enabled Apps for .NET

}

Once you have the handlers set up as described above, you can have your connector actually connect
to a device/headset/COM port by using one of the Connect methods described in Connect to a device
below. If the portName is valid and the connection is successful, then your OnDataReceived() method
will automatically be called and executed whenever data arrives from the headset.

Before exiting, your application must close the Connector's open connections by calling the con-
nector's close() method.

connector. close();

If close() is not called on an open connection, and that connection's process is still alive (i.e. a
background thread, or a process that only closed the GUI window without terminating the process
itself), then the headset will still be connected to the process, and no other process will be able to
connect to the headset until it is disconnected.

If you choose to connect by stating a specific COM port, it will take the following steps:
1. connector.Connect(portName);
2. connector.Connect in turn validates the COM port. So the DeviceValidating event is triggered
3. if the COM port was valid, it connects to the device. The DeviceFound event is never triggered
4. if the COM port was invalid, the DeviceNotFound event is triggered.

If you choose to connect by using the AUTO approach, it will take the following steps:
1. connector.Find();

2. if it is able to find a COM port with valid ThinkGear Packets, it triggers DeviceFound. Other-
wise, the DeviceNotFound event is triggered

3. the OnDeviceFound method in turn calls connector.Connect(tempPortName); where temp-
PortName is the valid COM port. This in turn calls DeviceValidating.

4. if the COM port was valid, it connects to the device.

5. if the COM port was invalid, the DeviceNotFound event is triggered.

Tips on using ThinkGear.NET

* In order to connect quickly, your application should always remember across sessions the last
COM portName that was able to successfully connect, and try to connect to that same portName
first the next time a connection attempt is made. If that remembered portName is no longer
valid or unable to connect, then you can use Connectscan(string portName) method to
find another valid portName.

* If an unexpected disconnection occurs, your application should try to reconnect automatically
and prompt the user to check their headset device for the following:

Events 10
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 3 — Developing Your Own ThinkGear-enabled Apps for .NET

— Battery is properly inserted into the headset device, and has sufficient charge (or try a new
battery)

— Headset device is turned on
— Headset device is propetly paired in Bluetooth settings

— Headset device is within range of the Bluetooth receiver (within 10m unobstructed)

Events 11
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 4

API Reference

Connector class

Methods

Connect to a device

void Connect(string portName) Attempts to open a connection with the port name specified by
portName. Calling this method results in one of two events being broadcasted:

* DeviceConnected - A connection was successfully opened on portName

* DeviceConnectFail - The connection attempt was unsuccessful

void ConnectScan() Attempts to open a connection to the first Device seen by the Connector.
Calling this method results in one of two events being broadcasted:

* DeviceConnected - A connection was successfully opened on portName

* DeviceConnectFail - The connection attempt was unsuccessful

void ConnectScan(string portName) Same as ConnectScan but scans the port specified by port-
Name first. Calling this method results in one of two events being broadcasted:

* DeviceConnected - A connection was successfully opened on portNName

* DeviceConnectFail - The connection attempt was unsuccessful

Disconnect from a device

void Disconnect() Closes all open connections. Calling this method will result in the following
event being broadcasted for each open device:

¢ DeviceDisconnected - The device was disconnected

void Disconnect(Connection connection) Closes a specific Connection specified by connection.
Calling this method will result in the following event being broadcasted for a specific open device:

¢ DeviceDisconnected - The device was disconnected

void Disconnect(Device device) Closes a specific Device specified by device. Calling this method
will result in the following event being broadcasted for a specific open device:

¢ DeviceDisconnected - The device was disconnected

12
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 4 — API Reference

Send bytes to a device

void Send(string portName, byte[] bytesToSend) Sends an array of bytes to a specific port

Events

DeviceFound Occurs when a ThinkGear device is found. This is where the application chooses to
connect to that port or not.

DeviceNotFound Occurs when a ThinkGear device could not be found. This is usually where the
application displays an error that it did not find any device.

DeviceValidating Occurs right before the connector attempts a serial port. Mainly used to notify
the GUI which port it is trying to connect.

DeviceConnected Occurs when a ThinkGear device is connected. This is where the application
links the OnDataReceived for that device.

DeviceConnectFail Occurs when the Connector fails to connect to that port specified.

DeviceDisconnected Occurs when the Connector disconnects from a ThinkGear device.

TGParser Class

Methods

Dictionary<string, double>[] Read(DataRow[] dataRow) Parses the raw headset datain dataRow
and returns a dictionary of usable data. It also stores the dictionary in the Parsedbata property.

When connected to a MindSet, MindWave, or MindWave Mobile headset, the Read () method can
return the following standard keys in its dictionary:

TGParser Class 13
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 4 — API Reference

Key Description Data Type
Time TimeStamps of packet received double
Raw Raw EEG data short
EegPowerDelta Delta Power uint
EegPowerTheta Theta Power uint
EegPowerAlphal Low Alpha Power uint
EegPowerAlpha2 High Alpha Power uint
EegPowerBetal Low Beta Power uint
EegPowerBeta2 High Beta Power uint
EegPowerGammal Low Gamma Power uint
EegPowerGamma2 High Gamma Power uint
Attention Attention eSense double
Meditation Meditation eSense double
PoorSignal Poor Signal double
BlinkStrength Strength of detected blink. The | uint

Blink Strength ranges from 1 (small

blink) to 255 (large blink). Unless

a blink occurred, nothing will be re-

turned. Blinks are only calculated if

PoorSignal is less than 51.
MindWandering Mind Wandering Level. The Mind | double

Wandering Level ranges from 1 (low

Mind Wandering) to 10 (high Mind

Wandering). The Mind Wandering

algorithm updates once every 0.5

seconds, assuming PoorSignal is less

than 51. If PoorSignal is above 51,

nothing is returned.

When connected to a ThinkCap, the Read () method can return the following keys in its dictionary:

Key Description Data Type
Time TimeStamps of packet received | double
RawChl1 | EEG Channel 1 short
RawCh2 | EEG Channel 2 short
RawCh3 | EEG Channel 3 short
RawCh4 | EEG Channel 4 short
RawCh5 | EEG Channel 5 short
RawCh6 | EEG Channel 6 short
RawCh7 | EEG Channel 7 short
RawCh8 | EEG Channel 8 short

When connected to a BMD10X device, the Read () method can return the following keys in its

TGParser Class
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

14

http://www.neurosky.com

Chapter 4 — API Reference

dictionary:
Key Description Data Type
Raw EEG short
HeartRate | Heart rate (BPM) double
Rrlnt Time between detected heart beats in milliseconds | uint

Note: As each packet is received in the ThinkGear DLL, the associated timestamp is also recorded

TGParser Class
December 20, 2012 | © 2012 NeuroSky, Inc. All Rights Reserved.

15

http://www.neurosky.com

	Introduction
	ThinkGear SDK for .NET Contents
	Supported ThinkGear Hardware

	Your First Project: HelloEEG console
	Developing Your Own ThinkGear-enabled Apps for .NET
	Preparing Your .NET Project
	The ThinkGear.dll
	The NeuroSky.ThinkGear Namespace
	Using the NeuroSky.ThinkGear Namespace
	Events
	Tips on using ThinkGear.NET

	API Reference
	Connector class
	Methods
	Events

	TGParser Class
	Methods

