NS0603 Application Note July 14, 2011

iOS Development Guide for ThinkGear

Features

* Develop iOS applications that utilize ThinkGear technology

* Downloadable ThinkGear-enabled sample iOS project with full sample code

e Uses the iOS External Accessories API (available in iPhone OS 3.0+) or the ThinkGear iOS API
Introduction

Thanks to the availability of the MindWave Mobile, developers can now create iOS applications that
can sense users brainwaves. This application note will walk you through the process of creating a

MindWave-capable iOS application.

This application note documents the usage of two different APIs to connect to a MindWave Mobile.

SDK Bugs and Issues

The current iteration of the SDK has the following limitations:

* There are some static analyzer warnings in the FSKLibrary, they are safe to ignore.

Hardware

The MindSet Link comes in three form factors:
* The MindWave Mobile which connects though an iOS device's built in Bluetooth
* A wired plug that plugs into the iOS device's audio jack. This is available as the PLX XWave

* A dongle that plugs into the iOS device's 30-pin connector and pairs wirelessly to a standard
MindSet

MindWave Mobile

The MindWave Mobile utilizes Bluetooth to connect to an iOS device.

Usage
1. Open the Settings app on the iOS device
2. Navigate to General » Bluetooth and turn Bluetooth on if not already enabled

3. Power on the MindWave Mobile

NeuraoSky

Brain-Computer Interface Techno gies

Section 4 - Hardware

4. MindWave Mobile will show up in the list of devices

5. Touch Mindwave Mobile and pairing will complete automatically

Note: Consult the MindWave Link User guide for pairing details.

Broadcast data
Data is sent from the MindSet Link at 512hz with the following information:
* Poor signal value

¢ eSense Attention

eSense Meditation

EEG power bands
Raw EEG data
Blink

Wired Plug

The wired plug utilizes the audio jack present in every iOS device, and this is used for the PLX XWave

Usage
1. Power on the XWave and plug in the cable into the audio jack of the iOS device.
At this point, you can open up a ThinkGear-enabled iOS application.

Broadcast data

Data is sent from the XWave at 1hz with the following information:
* Poor signal value
* eSense Attention
* eSense Meditation

* EEG power bands

Dongle

The dongle utilizes the 30-pin connector and connects to the MindSet.

Pairing Procedure

Users will first need to perform a pairing procedure to associate a specific MindSet to the MindSet
Link. This only needs to be done once.

1. Turn on the MindSet by pressing and holding the "power" button until the blue LED starts
blinking

2. Put the MindSet into pairing mode by keeping the "media" button (on the opposite earcup of
the "power" button) pushed in until the blue and red LEDs start flashing

Wired Plug 2
July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Section 5 — Using the ThinkGear iOS API

3. Plug the MindSet Link into your iOS-based device. The MindSet Link will now scan for any
MindSets in pairing mode, and then attempt to pair with it. You will know that a successful
pairing has taken place once the blue LED on both the MindSet and the MindSet Link stay

constantly on.

Normal Operation

Once the pairing procedure has been performed, the MindSet Link can be plugged in and unplugged
from the iOS-based device at the user's convenience. When the MindSet Link is plugged into the iOS-
based device, it will keep looking for its paired MindSet until the MindSet can be found, at which
point a connection to the MindSet will be established.

You will know that a connection is established when the blue LED on both the MindSet and the
MindSet Link stay constantly on.

Broadcast data

Data is sent from the MindSet Link at 1hz with the following information:
* Poor signal value
* eSense Attention

¢ eSense Meditation

* EEG power bands

Using the ThinkGear iOS API

For most applications, using the ThinkGear iOS API is recommended. It reduces the complexity
of managing ThinkGear accessory connections and handles parsing of the data stream from these
ThinkGear accessories. To make a brainwave-sensing application, all you need to do is to import a
library, add the requisite setup and teardown functions, and assign a delegate object to which accessory
event notifications will be dispatched.

Some limitations of the ThinkGear iOS API include:
* Can only communicate with one attached ThinkGear-enabled accessory

* Depending on the value of the user-configured event dispatch interval, some data received from
the headset may be discarded

The thinkgear\ _ios_api_reference contains descriptions of the classes and protocols available in the

ThinkGear iOS API.

The ThinkGear iOS SDK also includes the ThinkGearTouch sample project (contained in src/),
which is a simple U Tableview-based iOS application that displays the data coming from a MindSet
headset.

Configuring Your Environment

Simply copy the following directories from the src/1ib directory in the ThinkGear iOS SDK into
the Libraries group in your project:

® 1ibTGAccessory. a

July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Section 5 — Using the ThinkGear iOS API

® TGAccessoryDelegate. h
® TGAccessoryManager. h
® FSKLibrary/

Your project window should now look similar to this:

|| Libraries
" libTCAccessory.a
@ TCAccessoryDelegate.h
@ TCAccessoryManager.h
|| FSKLibrary

Figure 1: Xcode project window with the ThinkGear iOS library

Next, add the AudioToolbox and the ExternalAccessory frameworks to the project.
1. Navigate to your project settings
2. Select your target
3. Select Build Phases
4. Expand Link Binary With Libraries
5

. Click on + and select AudioToolbox. framework and ExternalAccessory. framework and

click Add

Your project window should now look similar to this:

Configuring Your Environment 4
July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Section 5 — Using the ThinkGear iOS API

(v Link Binary With Libraries (6 items)

&= AudioToolbox.framework Required 5
K= ExternalAccessory.framework Required 5
= Foundation framework Required 5
&= UIKit-framework Required 5
= CoreGraphics.framewaork Required 5
| libTGACcessory.a Required 5

+ -

Figure 2: Add frameworks to project

Then, import the appropriate header files (TGAccessoryManager. nand TGAccessoryDelegate. h)
into the requisite classes.

Setting Up the TGAccessoryManager

Setting up the TGAccessoryManager should be performed as early as necessary. Typically, this would
bein the applicationbDidFinishLaunching: method in the application delegate class. Simply add
the following two lines to that method:

[[TGAccessoryManager sharedTGAccessoryManager] setupManagerWithInterval:0.05];
[[TGAccessoryManager sharedTGAccessoryManager] setDelegate: (RootViewController
*)[[navigationController viewControllers] objectAtIndex:0]];

This sets up the TGAccessoryManager instance to dispatch dataReceived: notifications every
0.05s, or roughly 20 times per second. The delegate can be set to any class that implements the
TGAccessoryDelegate prOtOCOl — in this case, it's an instance of RootViewController.

Before the application quits, teardown of the TGAccessoryManager instance should be performed.
This should be performed as late as necessary, typically in the applicationwillTerminate: method
in the application delegate class. The following code should be added to that method:

[[TGAccessoryManager sharedTGAccessoryManager] teardownManager];

Handling Data Receipt

Since the delegate object was set to be a RootViewController instance, we have to edit its class
definition to indicate support of the TGAccessoryDelegate protocol. In the sample project file, the
class definition in RootViewController. hlooks similar to the following:

@interface RootViewController : UITableViewController

Setting Up the TGAccessoryManager 5
July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Section 5 — Using the ThinkGear iOS API

Simply modify the definition in the following way:
@interface RootViewController : UlITableViewController <TGAccessoryDelegate>

As a requisite of supporting the TGAccessoryDelegate protocol, the dataRecieved: method must
be implemented. In the header (. b) file, add the following method definition:

— (void)dataReceived: (NSDictionary *)data;

And in the implementation (. m) file, implement the method. A few NsLog calls are provided as a
trivial example of accessing the data parameter. Check the thinkgear\ ios_api_reference for a full
list of the supported keys.

— (void)dataReceived: (NSDictionary *)data {
NSLog(@"Data received!");
NSLog (@"Raw: %d", [[data valueForKey: @"raw"] intVvalue]);
NSLog(@"Attention: %d", [[data valueForKey:(@"eSenseAttention"] intValue]);

Handling Accesssory Connection and Disconnection

The TGAccessoryDelegate protocol also specifies two optional methods for the delegate object to
handle accessory connection and disconnection — accessoryDidConnect: and accessoryDid-
Disconnect. Add the following method definitions to the header file:

— (void) accessoryDidConnect: (EAAccessory *)accessory;
— (void) accessoryDidDisconnect;

In the implementation file, implement these methods:
— (void) accessoryDidConnect: (EAAccessory *)accessory {

NSLog(@"%$@ was connected to this device.", [accessory name]);

— (void) accessoryDidDisconnect {
NSLog(@"An accessory was disconnected.");

Starting the Data Stream

When your application is ready to receive the headset data, call the startstreammethod in TGAC-
cessoryManager. In the sample project, this is done in the viewWillAppear: method. It is advis-
able to check whether an accessory was found by the TGaccessoryManager before starting the data
stream:

if ([[TGAccessoryManager sharedTGAccessoryManager] accessory] != nil)
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

You will also need a matching call to stopstreamin the viewWillDisappear: method. Again, it
is advisable to make sure that a data stream is connected and active before closing it:

1f ([[TGAccessoryManager sharedTGAccessoryManager] connected])
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

Handling Accesssory Connection and Disconnection 6
July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Section 6 — Using Apple's External Accessories APls

Further Considerations

* The application should not expect there to be a ThinkGear accessory attached to the iOS-based
device on startup. As such, it should handle that case accordingly (e.g. by displaying a static
splash screen prompting the user to connect a ThinkGear accessory).

Using Apple's External Accessories APls

If you need finer-grained control over external accessory management or data stream handling, you
can use Apple's External Accessories API.

Configuring Your Environment

You'll first need to add the External Accessory framework to your Xcode project. See the previous
section about configuring your environment on how to add the ExternalAccessory.framework.

Enumerating Connected Accessories
Retrieving a list of the accessories currently connected to the device simply requires the following code:
NSArray * accessories = [[EAAccessoryManager sharedAccessoryManager] connectedAccessories];

You can then iterate over the resulting NsArray and process the accessories; to look for accessories
supporting a particular protocol string, for example, you would do the following:

for (EAAccessory * accessory in accessories){
if([[accessory protocolStrings] containsObject: @"com neurosky. thinkgear"]) {
// do some stuff here

Connecting to an Accessory

Once you've decided on an accessory to connect to, you must create an EASession instance and set up

the NSInputStreamand NsOutputstreaminstances. This requires knowledge of the specific protocol

with which you use to communicate with the accessory. For example, using the com. neurosky. thinkgear
protocol:

EASession * session = [[EASession alloc] initWithAccessory: accessory
forProtocol: @"com. neurosky. thinkgear"];

if (session){
// data stream from the accessory
[[session inputStream] setDelegate: self];
[[session inputStream] scheduleInRunLoop:[NSRunLoop currentRunLoop]
forMode: NSDefaultRunLoopMode] ;
[[session inputStream] open];

// data stream to the accessory

[[session outputStream] setDelegate:self];

[[session outputStream] scheduleInRunLoop: [NSRunLoop currentRunLoop]
forMode: NSDefaultRunLoopMode] ;

[[session outputStream] open];

Further Considerations 7
July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Section 6 — Using Apple's External Accessories APls

The delegate object for the inputsStreamand outputStream instances must then implement the
delegate method:

// Handle communications from the streams.
— (void)stream: (NSStream*)theStream handleEvent: (NSStreamEvent) streamEvent {
switch(streamEvent) {
case NSStreamHasBytesAvailable:
// Process the incoming stream data.
break;

case NSStreamEventHasSpaceAvailable:
// Send the next queued command.
break;

default:
break;

Register for Accessory Notifications

To receive notifications that an accessory has connected or disconnected, you must register for ac-
cessory notifications. Generally, it is recommended to do this as early in the application lifetime as
possible, so this is typically done in the applicationDidFinishLaunching: method in the appli-
cation delegate class:

[[EAAccessoryManager sharedAccessoryManager] registerForLocalNotifications];

It is also prudent to unregister for accessory notifications before the application quits. This should
be done as late in the application lifetime as possible, ideally in the applicationwillTerminate:
method.

[[EAAccessoryManager sharedAccessoryManager] unregisterForLocalNotifications];

Once you've let the system know you're interested in accessory notifications, you must write code to

handle them.

Handling Connection Events

To handle events that are fired when an accessory is connected, you must register a method to handle
the EAAccessoryDidConnectNotification event.

[[NSNotificationCenter defaultCenter] addObserver: self
selector: @selector(accessoryConnected:)
name: EAAccessoryDidConnectNotification
object: nil];

Note that the observer of the event is a method called accessoryConnected: on the self instance;
we must now create this method. This method can also include code that only handles accessories that
support the com. neuros ky. thinkgear protocol:

— (void) accessoryConnected: (NSNotification *)notification {
// the accessory can be retrieved by using the EAAccessoryKey key in the userInfo dictionary
EAAccessory * accessory = [[notification userInfo] objectForKey: @"EAAccessoryKey"];

Register for Accessory Notifications 8
July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Section 7 — References

1f([[accessory protocolStrings] containsObject: @"com neurosky. thinkgear"]) {
// do some stuff to handle a headset connection event here

Handling Disconnection Events

You must first specify a delegate class to handle the disconnection events. The delegate class must
implement the EAAccessoryDelegate protocol, which entails adding the accessorybidbiscon-
nect: method in your delegate class:

— (void) accessorybDidDisconnect: (EAAccessory *)accessory {
// do some stuff to handle the accessory disconnection event...

Disconnection event delegates are specified for each individual accessory, rather than via a global han-
dler. We can conveniently expand the accessoryConnected: code written in the previous section
to also assign a delegate for the accessory:

- (void) accessoryConnected: (NSNotification *)notification {
// the accessory can be retrieved by using the EAAccessoryKey key in the userInfo dictionary

EAAccessory * accessory = [[notification userInfo] objectForKey: @"EAAccessoryKey"];

if([[accessory protocolStrings] containsObject: @"com neurosky. thinkgear"]) {
// do some stuff to handle the headset connection event here...

// now assign a delegate to the accessory to handle disconnection events
[accessory setDelegate: self];

This will call the accessorybidbisconnect: method when that particular accessory disconnects.

References

» Communicating with External Accessories (Apple documentation)
* EAAccessoryManager Class Reference
* EAAccessory Class Reference

EASession Class Reference

Handling Disconnection Events 9
July 14,2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedFeatures/AdvancedFeatures.html#//apple_ref/doc/uid/TP40007072-CH14-SW20
http://developer.apple.com/iPhone/library/documentation/ExternalAccessory/Reference/EAAccessoryManager_class/Reference/Reference.html
http://developer.apple.com/iPhone/library/documentation/ExternalAccessory/Reference/EAAccessory_class/Reference/Reference.html#//apple_ref/occ/cl/EAAccessory
http://developer.apple.com/iphone/library/documentation/ExternalAccessory/Reference/EASession_class/Reference/Reference.html
http://www.neurosky.com

Corporate Address
NeuroSky, Inc.

125 S. Market St., Ste. 900
San Jose, CA 95113
United States

(408) 600-0129

Questions/Support: http://support.neurosky.com
or email: support@neurosky.com

Community Forum: http://developer.neurosky.com/forum

Information in this document is subject to change with-
out notice.

Reproduction in any manner whatsoever without the writ-
ten permission of NeuroSky Inc. is strictly forbidden.
Trademarks used in this text: eSense™, ThinkGear™, Mind-
Kit™, NeuroBoy™and NeuroSky®are trademarks of NeuroSky,
Inc.

Disclaimer: The information in this document is provided
in connection with NeuroSky products. No license, express
or implied, by estoppels or otherwise, to any intellectual
property rights is granted by this document or in connec-
tion with the sale of NeuroSky products. NeuroSky assumes
no liability whatsoever and disclaims any express, implied
or statutory warranty relating to its products including,
but not limited to, the implied warranty of merchantabil-
ity, fitness for a particular purpose, or non-infringement.
In no even shall NeuroSky be liable for any direct, indi-
rect, consequential, punitive, special or incidental damages
(including, without limitation, damages for loss of prof-
its, business interruption, or loss of information) arising
out of the use of inability to use this document, even
if NeuroSky has been advised of the possibility of such
damages. NeuroSky makes no representations or warranties
with respect to the accuracy or completeness of the contents
of this document and reserves the right to make changes to
specifications and product descriptions at any time with-
out notice. NeuroSky does not make any commitment
to update the information contained herein. NeuroSky’s
products are not intended, authorized, or warranted for
use as components in applications intended to support or
sustain life.

NeuraoSky

http://support.neurosky.com
mailto:support@neurosky.com
http://developer.neurosky.com/forum

	Features
	Introduction
	SDK Bugs and Issues
	Hardware
	MindWave Mobile
	Usage
	Broadcast data

	Wired Plug
	Usage
	Broadcast data

	Dongle
	Pairing Procedure
	Normal Operation
	Broadcast data

	Using the ThinkGear iOS API
	Configuring Your Environment
	Setting Up the TGAccessoryManager
	Handling Data Receipt
	Handling Accesssory Connection and Disconnection
	Starting the Data Stream
	Further Considerations

	Using Apple's External Accessories APIs
	Configuring Your Environment
	Enumerating Connected Accessories
	Connecting to an Accessory
	Register for Accessory Notifications
	Handling Connection Events
	Handling Disconnection Events

	References

