
ThinkGear Socket Protocol
January 8, 2012

e NeuroSky® product families consist of hardware and
software components for simple integration of this biosensor
technology into consumer and industrial end-applications.
All products are designed andmanufactured tomeet consumer
thresholds for quality, pricing, and feature sets. NeuroSky
sets itself apart by providing building block component
solutions that offer friendly synergies with related and complemen-
tary technological solutions.

Reproduction in anymanner whatsoever without the written
permission ofNeuroSky Inc. is strictly forbidden. Trademarks
used in this text: eSense™�CogniScore™�inkGear™�MindSet™,
MindWave™, NeuroBoy™, NeuroSky®

NOWARRANTIES: THENEUROSKYPRODUCTFAMILIES
AND RELATED DOCUMENTATION IS PROVIDED "AS
IS"WITHOUTANY EXPRESSOR IMPLIEDWARRANTY
OFANYKINDINCLUDINGWARRANTIESOFMERCHANTABIL-
ITY,NONINFRINGEMENTOF INTELLECTUALPROPERTY,
INCLUDINGPATENTS,COPYRIGHTSOROTHERWISE,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENTSHALLNEUROSKYOR ITS SUPPLIERSBELIABLE
FORANYDAMAGESWHATSOEVER (INCLUDING,WITHOUT
LIMITATION,DAMAGESFORLOSSOFPROFITS, BUSINESS
INTERRUPTION,COSTOFREPLACEMENTGOODSOR
LOSSOFORDAMAGETOINFORMATION)ARISINGOUT
OFTHEUSEOFOR INABILITYTOUSETHENEUROSKY
PRODUCTS ORDOCUMENTATION PROVIDED, EVEN
IF NEUROSKY HAS BEEN ADVISED OF THE POSSIBIL-
ITYOFSUCHDAMAGES. , SOMEOFTHEABOVELIMITATIONS
MAY NOT APPLY TO YOU BECAUSE SOME JURISDIC-
TIONS PROHIBIT THE EXCLUSION OR LIMITATION
OFLIABILITYFORCONSEQUENTIALOR INCIDENTAL
DAMAGES.

USAGE OF THE NEUROSKY PRODUCTS IS SUBJECT
OF AN END-USER LICENSE AGREEMENT.

Contents

Introduction 4
Conventions . 4

Overview 5

Authorization 6
Parameters . 6
Response . 6

Coníguration 7
Parameters . 7
Response . 7

Headset Data Transmission 8
Response . 8

Recording 10
Start recording . 10

Parameters . 10
Response . 10

Stop recording . 10
Parameters . 10
Response . 11

Cancel recording . 11
Parameters . 11
Response . 11

Event Recording . 11
Parameters . 11

sessionId Retrieval . 12
Parameters . 12

Session Retrieval . 12
Parameters . 12
Response . 12

Event listening . 13
Parameters . 13

List Applications . 13
Parameters . 13
Response . 13

Setting Users . 14
Parameters . 14
Response . 14

Getting Users . 14
Parameters . 14
Response . 14

Deleting Users . 14
Parameters . 14
Response . 15

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
3

http://www.neurosky.com

Chapter 0 –

Parsing 16
ActionScript 3 (Adobe Flash and Flex) . 16
C# (.NET and Mono) . 17

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
4

http://www.neurosky.com

Chapter 1

Introduction

e inkGear Socket Protocol (TGSP) is a JSON-based protocol for the transmission and receipt
of inkGear brainwave data between a client and a server. TGSP was designed to allow languages
and/or frameworks without a standard serial port API (e.g. Flash and most scripting languages) to
easily integrate brainwave-sensing functionality through socket APIs.

is document is a speciëcation for TGSP.

Important: is document is a draft speciícation and may change prior to the ënal release of the
document.

Conventions

ere will be several nomenclature conventions that will be used throughout this document.

• A server is a device or application that implements TGSP, and is responsible, amongst other
things, for responding to authorization requests and broadcasting headset data. einkGear
Connector is an example of a "server".

• A client is a device or application that connects to a server.

• Headset data refers to the data returned by a headset containing a inkGear module.

JSON nomenclature conventions will also be used throughout this document (primarily the concept
of a JSON object), so it is best to scan the language speciëcation to brush up.

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
5

http://www.json.org
http://www.json.org
http://www.neurosky.com

Chapter 2

Overview

ere are several primary stages in the lifetime of a TGSP connection.

1. Creation of socket connection

2. Authorization (one-time) — Authorization of the client by the server

3. Coníguration of server (performed any time)

4. Receipt of headset data (repeating)

5. Termination of socket connection

ese primary stages are covered in detail in the following sections.

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
6

http://www.neurosky.com

Chapter 3

Authorization

e client must initiate an authorization request and the server must authorize the client before the
server will start transmitting any headset data.

Parameters

• appName. Required. A human-readable name identifying the client application. is can be a
maximum of 255 characters.

• appKey. Required. e key used by the client application to identify itself. is must be 40
hexadecimal characters, ideally generated using an SHA-1 digest. See the Note below.

{"appName":"Brainwave Shooters","appKey":"9f54141b4b4c567c558d3a76cb8d715cbde03096"}

Note: e appKey is an identiëer that is unique to each application, rather than each instance of an
application. It is used by the server to bypass the authorization process if a user had previously autho-
rized the requesting client. To reduce the chance of overlap with the appKey of other applications,
the appKey should be generated using an SHA-1 digest.

Response

e server will respond to the client after receiving an authorization request from the client. e
response will be sent prior to the transmission of any headset data.

• isAuthorized. Tells the client whether the server has authorized access to the user's headset
data. e value is either true or false.

{"isAuthorized":true}

Note: ere is no guarantee that a response to the authorization request will be transmitted by the
server in any amount of time. As such, clients should stay in an idle state until a response is received
from the server.

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
7

http://www.neurosky.com

Chapter 4

Configuration

A client can send commands to a server to conëgure such things as transmission formats or the compo-
nents of data transmitted by the server. ese commands can be sent at any time after the authorization
process.

Parameters

• enableRawOutput - Optional. Whether raw sensor output should be included in the transmit-
ted data. e value of this parameter should be either true or false (default).

• format - Optional. e format in which headset data should be transmitted to the client. e
value of this parameter should be either "BinaryPacket" (default) or "Json". When specifying
this value, make note of the capitalization!

{"enableRawOutput":true,"format":"Json"}

Response

No explicit response to these packets will be sent by the server — the server will simply start transmit-
ting data in the conëgured format.

Important: Because it may take some time for the inkGear Connector to re-conëgure itself to
transmit JSON packets, several binary packets may be prematurely transmitted to the application. As
such, an application should be able to handle the receipt of unexpected binary packets without failing
critically.

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
8

http://www.neurosky.com

Chapter 5

Headset Data Transmission

Data transmission from the server is done using a streaming model; the client does not issue any
explicit requests to the server for brainwave data.

Because there is no mechanism in JSON to handle streaming (i.e. continuously appended) data,
TGSP delimits individual JSON objects with carriage return characters (\r), so each JSON object
will occupy its own line.

Important: Even though JSON is the preferred transmission format, the binary packet format (used
in earlier versions of TGSP) is the default format. Documentation for the binary packet format can
be found in the Binary Socket Packet Format document.

e Binary Socket Packet Format will eventually be deprecated in favor of the JSON format, so
application developers are encouraged to switch to the JSON format as soon as possible.

Response

• poorSignalLevel. A quantiëer of the quality of the brainwave signal. is is an integer value
that is generally in the range of 0 to 200, with 0 indicating a good signal and 200 indicating an
off-head state.

• eSense. A container for the eSense™ attributes. ese are integer values between 0 and 100,
where 0 is perceived as a lack of that attribute and 100 is an excess of that attribute.

– attention. e eSense Attention value.

– meditation. e eSense Meditation value.

• eegPower. A container for the EEG powers. ese may be either integer or ìoating-point
values.

– delta. e "delta" band of EEG.

– theta. e "theta" band of EEG.

– lowAlpha. e "low alpha" band of EEG.

– highAlpha. e "high alpha" band of EEG.

– lowBeta. e "low beta" band of EEG.

– highBeta. e "high beta" band of EEG.

– lowGamma. e "low gamma" band of EEG.

– highGamma. e "high gamma" band of EEG.

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
9

http://www.neurosky.com

Chapter 5 – Headset Data Transmission

• rawEeg. e raw data reading off the forehead sensor. is may be either an integer or a
ìoating-point value. is data is represented in its own JSON object, as in the sample below.

• rawEegMulti. A container for multichannel raw EEG data. ese may be either integer or
ìoating-point values.

– ch1. e raw data from channel 1.

– ch2. e raw data from channel 2.

– ch3. e raw data from channel 3.

– ch4. e raw data from channel 4.

– ch5. e raw data from channel 5.

– ch6. e raw data from channel 6.

– ch7. e raw data from channel 7.

– ch8. e raw data from channel 8.

• blinkStrength. e strength of a detected blink. is is an integer in the range of 0-255.
is data is represented in its own JSON object, as in the sample below.

{"poorSignalLevel":0,"eSense":{"attention":38,"meditation":43},"eegPower":{"delta":1.15e-4,"theta":1.41e-6,"lowAlpha":1.35e-4,"highAlpha":6.69e-5,"lowBeta":1.47e-5,"highBeta":6.95e-7,"lowGamma":5.26e-7,"highGamma":1.40e-5}}
{"rawEeg":238}
{"rawEeg":282}
{"blinkStrength":100}
{"rawEeg":239}
{"rawEegMulti":{"ch1":392,"ch2":352,"ch3":492,"ch4":592,"ch5":692,"ch6":442,"ch7":122,"ch8":552}}

Note: With the exception of rawEeg and blinkStrength, the headset components are transmitted
at a rate of 1Hz. rawEeg, if enabled, is transmitted at a rate no higher than 512Hz. blinkStrength
is transmitted whenever a blink is detected by the headset.

Note: e client should not expect a speciëc component of headset data to be present in all (or even
any) packets transmitted by the server. e client should thus maintain state between receipts of
headset data from the server. Also, the ordering of the parameters in each individual JSON object
cannot be guaranteed.

Response
January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

10

http://www.neurosky.com

Chapter 6

Recording

If the server supports brainwave and event recording, the client can enable recording by sending the
following commands:

Start recording

e client can start recording by sending:

{"startRecording":{"rawEeg":true,"poorSignalLevel":true,"eSense":true,
"eegPower":true,"blinkStrength":true},"applicationName":"ExampleApp"}

Parameters
• startRecording. Required. Container for parameters to enable recording types.

– rawEeg. Optional. Set as true to enable raw EEG recording. Omit or set as false to
disable raw EEG recording.

– poorSignalLevel. Optional. Set as true to enable poorSignalLevel recording. Omit or
set as false to disable poorSignalLevel recording.

– eSense. Optional. Set as true to enable eSense recording. Omit or set as false to disable
eSense recording.

– eegPower. Optional. Set as true to enable EEG power recording. Omit or set as false
to disable EEG power recording.

– blinkStrength. Optional. Set as true to enable blink recording. Omit or set as false
to disable blink recording.

• applicationName. Required. A human-readable name identifying the client application.

Response

Stop recording

e client can stop the recording by sending:

{"stopRecording":"ExampleApp"}

Parameters
• stopRecording - Required. Set as the application name.

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
11

http://www.neurosky.com

Chapter 6 – Recording

Response
e server will respond with the following:

{"status":"recordingStopped","sessionId":1234,"filePath":"c:\\path\\to\\file\\1234.json"}

• sessionId. e session number that was just recorded.

• filePath. e path to the recorded data.

Cancel recording

e client can cancel the recording by sending:

{"cancelRecording":"ExampleApp"}

Parameters
• cancelRecording - Required. Set as the application name.

Response
e server will respond with the following:

{"status":"canceled"}

Event Recording

During the recording, the client can record events by sending:

{"eventType":"question","eventData":{"question":"question", "answer":"answer","result":true},
"time":456123153,"applicationName":"ExampleApp"}

or

{"eventType":"generic","eventData":{"genericJSONobject"},"time":45312255,
"applicationName":"ExampleApp"}

Parameters
• eventType - Required. Type of event. Either "question" or "generic".

• eventData - Required. Container of event data.

– For question - event types, the following parameters are required.

* question - Requred. Questioned asked by application.

* answer - Required. Correct answer.

* userAnswer - Required. Answer given by user.

Cancel recording
January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

12

http://www.neurosky.com

Chapter 6 – Recording

* result - Required. True or false depending on the user answering the question cor-
rectly.

– For generic event types, eventData can hold any JSON object.

• time - Optional. Timestamp recorded by the application. (e server will automatically record
a timestamp).

• applicationName - Required. Application name.

sessionId Retrieval

Retrieve previously recorded session ids from the server.

{"getSessionIds":"ExampleApp"}

Parameters
• getSessionIds - Required. Set as the application name.

Response

e server will respond with an array of sessionIds and the time the session started.

{"availableSessionIds":[{"sessionId":1,"timeStamp":198328888.222},
{"sessionId":2,"timeStamp":2828828.333}]}

If no sessions are available, the server will respond a null packet.

{“availableSessionIds”:null}

Session Retrieval

e client can get a session's data by sending:

{"getSessionId":1,"applicationName":"ExampleApp"}

Parameters
• getSessionId - Required. e desired sessionId.

• applicationName - Required. Set as the application name.

Response
e server will respond with the desired session data

{"sessionId":1,"data":[{"timeStamp":3929239,
"poorSignalLevel":0,"eSense":{"attention":38,"meditation":43},
"eegPower":{"delta":1.15e-4,"theta":1.41e-6,"lowAlpha":1.35e-4,
"highAlpha":6.69e-5,"lowBeta":1.47e-5,"highBeta":6.95e-7, "lowGamma":5.26e-7,"highGamma":1.40e-5}},
{"timeStamp":3929242, "rawEeg":344},{"timeStamp":3929245,"rawEeg":804}]}

sessionId Retrieval
January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

13

http://www.neurosky.com

Chapter 6 – Recording

Note: Due to the large amounts of data returned, session data will be sent to only to clients in
EventListener mode.

Parameters

• sessionId - e sessionId.

• data - An array of timestamped session data.

Event listening

To get a live stream of events from another application, send the following command:

{"enableRawOutput":true,"format":"EventListener"}

Parameters
• enableRawOutput - Optional. Whether raw sensor output should be included in the transmit-
ted data. e value of this parameter should be either true or false (default).

• format - Required. Set as EventListener.

List Applications

e client can request a list of applications with recorded data by sending:

{"getAppNames":null}

Parameters
• getAppNames - Required. Set as null.

Response
e server will respond with a list of applications names:

{"appNames":[ExampleApp, ExampleApp2]}

If there are no recorded data, then the server will respond:

{"appNames":null}

Parameters

• appNames - An array of application names.

Event listening
January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

14

http://www.neurosky.com

Chapter 6 – Recording

Setting Users

To enable recording by user, send the following command:

{"setUser":{"userName":"Joe Smith", "userId":12}}

Parameters
• userName - Required. Set as desired username.

• userId - Optional. Set as desired ID number. If not supplied, the server will automatically
assign the next available ID.

Response
If successful, the server will respond with:

{"setUserSuccess":{"userName":"Joe Smith", "userId":12}}

Getting Users

To enable recording by user, send the following command:

{"getUsers":"exampleApp"}

Parameters

Response
If successful, the server will respond with:

{"users":[{"userName":"Joe Smith","userId":2},{"userName":"Matt Yoon","userId":4}]}

Deleting Users

To enable recording by user, send the following command:

{"deleteUser":{"userName":"Joe Smith","userId":2}}

Parameters
• userName - Required. Set as desired username.

• userId - Required. Set as desired ID number.

Setting Users
January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

15

http://www.neurosky.com

Chapter 6 – Recording

Response
If successful, the server will respond with:

{"deleteUserSuccess":{"userName":"Joe Smith", "userId":12}}

Deleting Users
January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

16

http://www.neurosky.com

Chapter 7

Parsing

Clients will ërst have to tokenize the stream using the carriage return (\r) delimiter, then parse each
token individually as a JSON object. is is demonstrated by the following pseudocode:

while there is still data in the stream
read the line
parse the line as JSON

Important: When using the JSON output format and tokenizing a packet stream using a \r delimiter,
be careful about parsing the last token as a JSON object. e packet stream will end in a \r character,
meaning that the tokenizer will likely return an empty string as the last token.

Also, your parsing code should be tolerant of incomplete packet strings, in the event that the stream
is parsed mid-transfer.

Once a JSON object has been extracted out of the stream, it can be parsed using any of a number of
readily-available JSON parsing libraries. An exhaustive list of JSON parsers for various languages can
be found at the JSON website, but here are the ones that NeuroSky recommends:

Language Library
ActionScript 3 (Flash/Flex) ActionScript 3 corelib
C# (.NET/Mono) Jayrock

ActionScript 3 (Adobe Flash and Flex)

Once a Socket has been created in your code, you'll need to conëgure the inkGear Connector to
output JSON (and optionally, raw sensor data). is is done by sending a packet that is formatted to
the Conëguration packet speciëcation. For example:

var configuration : Object = new Object();
configuration["enableRawOutput"] = true;
configuration["format"] = "Json";

socket.writeUTFBytes(JSON.encode(configuration));

When reading data from the inkGear Connector, you can read data directly into a String from
the socket stream. For AS3, this code would typically go into the function that was delegated as the
event listener:

var packetString : String = socket.readUTFBytes(socket.bytesAvailable);

January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.
17

http://www.JSON.org/
http://code.google.com/p/as3corelib/
http://jayrock.berlios.de/
http://www.neurosky.com

Chapter 7 – Parsing

en, the string should be tokenized using the carriage return (\r) as the delimiter:

var packets : Array = packetString.split(/\r/);

You can then iterate over each of the packets, parsing it into JSON:

for(var packet : String in packets){
var data : Object = JSON.decode(packet);

// note that not all packets will contain a "rawEeg" parameter; the
// appropriate error checking should be performed.
trace(data["rawEeg"]);
trace(data["eSense"]["attention"]);

}

C# (.NET and Mono)

Typically, socket data is returned as an array of bytes in a buffer. is should be converted to a string
prior to parsing it as JSON:

byte[] buffer = new byte[8192];
networkStream.Read(buffer, 0, buffer.Length);

string packetString = System.Text.ASCIIEncoding.ASCII.GetString(buffer);

Next, the string should be tokenized using a carriage return (\r) as the delimiter:

string[] packets = String.Split(packetString, new char[]{"\r"});

Now that you've split the packet stream into its constituent packets, you can loop over the array and
parse each packet individually. e headset data can then be referenced directly:

foreach(string packet in packets){
IDictionary data = (IDictionary)JsonConvert.Import(typeof(IDictionary), packet);

// note that not all packets will contain a "rawEeg" parameter; the
// appropriate error checking should be performed.
Console.WriteLine("Raw data: " + data["rawEeg"]);

}

Note: By default, Visual Studio imports the System.Collections.Generic package when creating
a new class ële. During compilation, however, this causes problems with the typecast used above.
Simply remove the import System.Collections.Generic statement from the ële header to ëx
the compilation error.

C# (.NET and Mono)
January 8, 2012 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

18

http://www.neurosky.com

	Introduction
	Conventions

	Overview
	Authorization
	Parameters
	Response

	Configuration
	Parameters
	Response

	Headset Data Transmission
	Response

	Recording
	Start recording
	Parameters
	Response

	Stop recording
	Parameters
	Response

	Cancel recording
	Parameters
	Response

	Event Recording
	Parameters

	sessionId Retrieval
	Parameters

	Session Retrieval
	Parameters
	Response

	Event listening
	Parameters

	List Applications
	Parameters
	Response

	Setting Users
	Parameters
	Response

	Getting Users
	Parameters
	Response

	Deleting Users
	Parameters
	Response

	Parsing
	ActionScript 3 (Adobe Flash and Flex)
	C# (.NET and Mono)

