
NS0603 Application Note December 17, 2012

ThinkGear SDK for iOS: Development
Guide

Introduction

is guide will teach you how to use NeuroSky'sinkGear SDK for iOS to write iOS applications
that can utilize bio-signal data from NeuroSky's inkGear family of bio-sensors (which includes the
CardioChip family of products). is will enable your iOS apps to receive and use bio-signal data
such as EEG and ECG/EKG acquired from NeuroSky's sensor hardware.

is guide (and the entireinkGear SDK for iOS for that matter) is intended for programmers who
are already familiar with standard iOS development using Xcode and Apple's iOS SDK. If you are not
already familiar with developing for iOS, please ërst visit Apple's web site for instruction and tools to
develop iOS apps.

If you are already familiar with creating typical iOS apps, then the next step is to make sure you have
downloaded NeuroSky's inkGear SDK for iOS. Chances are, if you're reading this document,
then you already have it. If not, the SDK can be downloaded from
http://store.neurosky.com/products/developer-tools-3-iphone.

ThinkGear SDK for iOS Contents
• inkGear SDK for iOS: Development Guide (this document ios_development_guide.pdf )

• inkGear SDK for iOS: API Reference (thinkgear_ios_api_reference.pdf )

• libTGAccessory.a library and headers

• inkGearTouch example project for iOS

You'll ënd the "API Reference" in the TG-SDK, the "libTGAccessory.a" in the lib/ folder, and the
"inkGearTouch example project" in the Sample Project/ThinkGearTouch/ folder.

Supported ThinkGear Hardware
einkGear SDK for iOS must be used with ainkGear-compatible hardware sensor device. e
following inkGear-compatible hardware devices are currently supported:

• MindWave Mobile for use with an iOS device's built in Bluetooth

• CardioChip Starter Kit Unit

Important: Before using any iOS application that uses the TG-SDK for iOS, make sure you have
paired the inkGear sensor hardware to your iOS device by carefully following the instructions in
the User Manual that came with each inkGear hardware device!

http://store.neurosky.com/products/developer-tools-3-iphone


Section 4 – Developing Your Own ThinkGear-enabled Apps for iOS

SDK Bugs and Issues

e current iteration of the SDK has the following limitations:

• e SDK does not support Automatic Reference Counting in this release.

Your First Project: ThinkGearTouch

inkGearTouch is a sample project we've included in the inkGear SDK for iOS that demon-
strates how to setup, connect, and handle data to a inkGear device. Add the project to your Xcode
enviornment by following these steps:

1. In Xcode, select File ! Open !

2. Browse in the TG-SDK to select the Sample Project/inkGearTouch directory

3. Click the Open button

4. Update the code signing options in the project target settings

5. Select Product ! Run to compile, link and start inkGearTouch in the Xcode emulator.

Note: is is an example application. It may not be completely compliant with Apple's guidelines for
building deploy able applications.

At this point, you should be able to browse the code, make modiëcations, compile, and deploy the
app to your device or emulator just like any typical iOS application.

Developing Your Own ThinkGear-enabled Apps for iOS

For most applications, using the inkGear iOS API is recommended. It reduces the complexity
of managing inkGear accessory connections and handles parsing of the data stream from these
inkGear accessories. To make a brainwave-sensing application, all you need to do is to import a
library, add the requisite setup and teardown functions, and assign a delegate object to which accessory
event notiëcations will be dispatched.

Some limitations of the inkGear for iOS API include:

• Can only communicate with one attached inkGear-enabled accessory

• Depending on the value of the user-conëgured event dispatch interval, some data received from
the headset may be discarded

e "inkGear SDK for iOS: API Reference" contains descriptions of the classes and protocols avail-
able in the inkGear iOS API.

einkGear iOS SDK also includes the ThinkGearTouch sample project, which is a simple UITable-
View-based iOS application that displays the data coming from a inkGear hardware module.

December 17, 2012 | © 2009 NeuroSky, Inc. All Rights Reserved.
2

http://www.neurosky.com


Section 4 – Developing Your Own ThinkGear-enabled Apps for iOS

Configuring Your Environment
In order for you app to communicate with anyinkGear hardware module, youmust include include
the UISupportedExternalAccessoryProtocols or Supported external accessory proto-
cols key in your app’s Info.plist ële. is key contains an array of strings that identify the commu-
nications protocols that your app supports. Add com.neurosky.thinkgear to the list of supported
external accessory protocols.

Copy the following directories from the src/lib directory in the inkGear SDK for iOS into the
Libraries group in your project:

• libTGAccessory.a

• TGAccessoryDelegate.h

• TGAccessoryManager.h

Your project window should now look similar to this:

Figure 1: Xcode project window with the inkGear iOS library

Next, add the Accelerate and the ExternalAccessory frameworks to the project.

1. Navigate to your project settings

2. Select your target

3. Select Build Phases

4. Expand Link Binary With Libraries

5. Click on + and select Accelerate.framework and ExternalAccessory.framework and
click Add

Your project window should now look similar to this:

Configuring Your Environment
December 17, 2012 | © 2009 NeuroSky, Inc. All Rights Reserved.

3

http://www.neurosky.com


Section 4 – Developing Your Own ThinkGear-enabled Apps for iOS

Figure 2: Add frameworks to project

en, import the appropriate header ëles (TGAccessoryManager.h and TGAccessoryDelegate.h)
into the requisite classes.

Setting Up the TGAccessoryManager
Setting up the TGAccessoryManager should be performed as early as necessary. Typically, this would
be in the applicationDidFinishLaunching: method in the application delegate class. Simply add
the following two lines to that method:

[[TGAccessoryManager sharedTGAccessoryManager] setupManagerWithInterval:0.05];
[[TGAccessoryManager sharedTGAccessoryManager] setDelegate:(RootViewController
*)[[navigationController viewControllers] objectAtIndex:0]];

is sets up the TGAccessoryManager instance to dispatch dataReceived: notiëcations every
0.05s, or roughly 20 times per second. e delegate can be set to any class that implements the
TGAccessoryDelegate protocol — in this case, it's an instance of RootViewController.

Before the application quits, teardown of the TGAccessoryManager instance should be performed.
is should be performed as late as necessary, typically in the applicationWillTerminate: method
in the application delegate class. e following code should be added to that method:

[[TGAccessoryManager sharedTGAccessoryManager] teardownManager];

Handling Data Receipt
Since the delegate object was set to be a RootViewController instance, we have to edit its class
deënition to indicate support of the TGAccessoryDelegate protocol. In the sample project ële, the
class deënition in RootViewController.h looks similar to the following:

@interface RootViewController : UITableViewController

Setting Up the TGAccessoryManager
December 17, 2012 | © 2009 NeuroSky, Inc. All Rights Reserved.

4

http://www.neurosky.com


Section 4 – Developing Your Own ThinkGear-enabled Apps for iOS

Simply modify the deënition in the following way:

@interface RootViewController : UITableViewController <TGAccessoryDelegate>

As a requisite of supporting the TGAccessoryDelegate protocol, the dataRecieved: method must
be implemented. In the header (.h) ële, add the following method deënition:

- (void)dataReceived:(NSDictionary *)data;

And in the implementation (.m) ële, implement the method. A few NSLog calls are provided as a
trivial example of accessing the data parameter. Check the "inkGear SDK for iOS: API Reference"
for a full list of the supported keys.

- (void)dataReceived:(NSDictionary *)data {
NSLog(@"Data received!");
NSLog(@"Raw: %d", [[data valueForKey:@"raw"] intValue]);
NSLog(@"Attention: %d", [[data valueForKey:@"eSenseAttention"] intValue]);

}

Handling Accesssory Connection and Disconnection
e TGAccessoryDelegate protocol also speciëes two methods for the delegate object to handle
accessory connection and disconnection — accessoryDidConnect: and accessoryDidDiscon-
nect. Add the following method deënitions to the header ële:

- (void)accessoryDidConnect:(EAAccessory *)accessory;
- (void)accessoryDidDisconnect;

In the implementation ële, implement these methods:

- (void)accessoryDidConnect:(EAAccessory *)accessory {
NSLog(@"%@ was connected to this device.", [accessory name]);

}

- (void)accessoryDidDisconnect {
NSLog(@"An accessory was disconnected.");

}

Starting the Data Stream
When your application is ready to receive the headset data, call the startStream method in TGAc-
cessoryManager. In the sample project, this is done in the viewWillAppear: method. It is advis-
able to check whether an accessory was found by the TGAccessoryManager before starting the data
stream:

if([[TGAccessoryManager sharedTGAccessoryManager] accessory] != nil)
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

You will also need a matching call to stopStream in the viewWillDisappear: method. Again, it
is advisable to make sure that a data stream is connected and active before closing it:

if([[TGAccessoryManager sharedTGAccessoryManager] connected])
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

Handling Accesssory Connection and Disconnection
December 17, 2012 | © 2009 NeuroSky, Inc. All Rights Reserved.

5

http://www.neurosky.com


Section 5 – References

Application lifecycle
On devices that support multitasking, your application should expect the following behavior:

• Upon entering the background, accessoryDidDisconnect: will be called.

• Upon returning from the background, accessoryDidConnect: will be called.

Your application must restart the data stream when resuming from the background. For example:

- (void)accessoryDidConnect:(EAAccessory *)accessory {
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

}

Before your application is terminated, you must stop the manager if you have not done so already.

- (void)applicationWillTerminate:(UIApplication *)application {
[[TGAccessoryManager sharedTGAccessoryManager] teardownManager];

}

Log messages
e TGAccessory library will emit some debug messages through NSLog() to help you develop and
debug your application. ese messages will be preëxed with "TGAccessory:" .

Further Considerations
• e application should not expect there to be a inkGear accessory attached to the iOS-based
device on startup. As such, it should handle that case accordingly (e.g. by displaying a static
splash screen prompting the user to connect a inkGear accessory).

• Provide a consistant user experience by adhering to the guidelines set by the NeuroSkyDeveloper
Application Standards document.

References

• Communicating with External Accessories (Apple documentation)

• EAAccessoryManager Class Reference

• EAAccessory Class Reference

• EASession Class Reference

Application lifecycle
December 17, 2012 | © 2009 NeuroSky, Inc. All Rights Reserved.

6

http://developer.neurosky.com/docs/doku.php?id=app_standards
http://developer.neurosky.com/docs/doku.php?id=app_standards
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedFeatures/AdvancedFeatures.html#//apple_ref/doc/uid/TP40007072-CH14-SW20
http://developer.apple.com/iPhone/library/documentation/ExternalAccessory/Reference/EAAccessoryManager_class/Reference/Reference.html
http://developer.apple.com/iPhone/library/documentation/ExternalAccessory/Reference/EAAccessory_class/Reference/Reference.html#//apple_ref/occ/cl/EAAccessory
http://developer.apple.com/iphone/library/documentation/ExternalAccessory/Reference/EASession_class/Reference/Reference.html
http://www.neurosky.com


Corporate Address
NeuroSky, Inc.
125 S. Market St., Ste. 900
San Jose, CA 95113
United States
(408) 600-0129

Questions/Support: http://support.neurosky.com
or email: support@neurosky.com

Community Forum: http://developer.neurosky.com/forum

Information in this document is subject to change with-
out notice.

Reproduction in anymanner whatsoever without the writ-
ten permission of NeuroSky Inc. is strictly forbidden.
Trademarks used in this text: eSense™,inkGear™,Mind-
Kit™, NeuroBoy™andNeuroSky®are trademarks ofNeuroSky,
Inc.

Disclaimer: e information in this document is provided
in connectionwithNeuroSky products. No license, express
or implied, by estoppels or otherwise, to any intellectual
property rights is granted by this document or in connec-
tionwith the sale ofNeuroSky products. NeuroSky assumes
no liability whatsoever and disclaims any express, implied
or statutory warranty relating to its products including,
but not limited to, the implied warranty of merchantabil-
ity, ëtness for a particular purpose, or non-infringement.
In no even shall NeuroSky be liable for any direct, indi-
rect, consequential, punitive, special or incidental damages
(including, without limitation, damages for loss of prof-
its, business interruption, or loss of information) arising
out of the use of inability to use this document, even
if NeuroSky has been advised of the possibility of such
damages. NeuroSkymakes no representations or warranties
with respect to the accuracy or completeness of the contents
of this document and reserves the right tomake changes to
speciëcations and product descriptions at any time with-
out notice. NeuroSky does not make any commitment
to update the information contained herein. NeuroSky’s
products are not intended, authorized, or warranted for
use as components in applications intended to support or
sustain life.

http://support.neurosky.com
mailto:support@neurosky.com
http://developer.neurosky.com/forum

	Introduction
	ThinkGear SDK for iOS Contents
	Supported ThinkGear Hardware

	SDK Bugs and Issues
	Your First Project: ThinkGearTouch
	Developing Your Own ThinkGear-enabled Apps for iOS
	Configuring Your Environment
	Setting Up the TGAccessoryManager
	Handling Data Receipt
	Handling Accesssory Connection and Disconnection
	Starting the Data Stream
	Application lifecycle
	Log messages
	Further Considerations

	References

