
NS0603 Application Note November 12, 2011

iOS Development Guide for ThinkGear
Features

• Develop iOS applications that utilize inkGear technology

• Downloadable inkGear-enabled sample iOS project with full sample code

• Uses the iOS External Accessories API (available in iPhone OS 3.0+) or theinkGear iOS API

Introduction

anks to the availability of the MindWave Mobile, developers can now create iOS applications that
can sense users' brainwaves. is application note will walk you through the process of creating a
MindWave-capable iOS application.

is application note documents the usage of two different APIs to connect to a MindWave Mobile.

SDK Bugs and Issues

e current iteration of the SDK has the following limitations:

• ere are some static analyzer warnings in the FSKLibrary, they are safe to ignore.

Hardware

einkGear iOS API supports the following hardware:

• e MindWave Mobile which connects though an iOS device's built in Bluetooth

• e MindSet Link dongle which plugs into the iOS device's 30-pin connector and pairs wire-
lessly to a standard MindSet

• Compatible devices which plug into the iOS device's audio jack

Using the ThinkGear iOS API

For most applications, using the inkGear iOS API is recommended. It reduces the complexity
of managing inkGear accessory connections and handles parsing of the data stream from these
inkGear accessories. To make a brainwave-sensing application, all you need to do is to import a
library, add the requisite setup and teardown functions, and assign a delegate object to which accessory
event notiëcations will be dispatched.

Some limitations of the inkGear iOS API include:

Section 5 – Using the ThinkGear iOS API

• Can only communicate with one attached inkGear-enabled accessory

• Depending on the value of the user-conëgured event dispatch interval, some data received from
the headset may be discarded

e thinkgear_ios_api_reference contains descriptions of the classes and protocols available in the
inkGear iOS API.

e inkGear iOS SDK also includes the ThinkGearTouch sample project (contained in src/),
which is a simple UITableView-based iOS application that displays the data coming from a MindSet
headset.

Configuring Your Environment
Simply copy the following directories from the src/lib directory in the inkGear iOS SDK into
the Libraries group in your project:

• libTGAccessory.a

• TGAccessoryDelegate.h

• TGAccessoryManager.h

• FSKLibrary/

Your project window should now look similar to this:

Figure 1: Xcode project window with the inkGear iOS library

Next, add the AudioToolbox and the ExternalAccessory frameworks to the project.

1. Navigate to your project settings

2. Select your target

3. Select Build Phases

4. Expand Link Binary With Libraries

Configuring Your Environment
November 12, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

2

http://www.neurosky.com

Section 5 – Using the ThinkGear iOS API

5. Click on + and select AudioToolbox.framework and ExternalAccessory.framework and
click Add

Your project window should now look similar to this:

Figure 2: Add frameworks to project

en, import the appropriate header ëles (TGAccessoryManager.h and TGAccessoryDelegate.h)
into the requisite classes.

Setting Up the TGAccessoryManager
Setting up the TGAccessoryManager should be performed as early as necessary. Typically, this would
be in the applicationDidFinishLaunching: method in the application delegate class. Simply add
the following two lines to that method:

[[TGAccessoryManager sharedTGAccessoryManager] setupManagerWithInterval:0.05];
[[TGAccessoryManager sharedTGAccessoryManager] setDelegate:(RootViewController
*)[[navigationController viewControllers] objectAtIndex:0]];

is sets up the TGAccessoryManager instance to dispatch dataReceived: notiëcations every
0.05s, or roughly 20 times per second. e delegate can be set to any class that implements the
TGAccessoryDelegate protocol — in this case, it's an instance of RootViewController.

Before the application quits, teardown of the TGAccessoryManager instance should be performed.
is should be performed as late as necessary, typically in the applicationWillTerminate: method
in the application delegate class. e following code should be added to that method:

[[TGAccessoryManager sharedTGAccessoryManager] teardownManager];

Setting Up the TGAccessoryManager
November 12, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

3

http://www.neurosky.com

Section 5 – Using the ThinkGear iOS API

Handling Data Receipt
Since the delegate object was set to be a RootViewController instance, we have to edit its class
deënition to indicate support of the TGAccessoryDelegate protocol. In the sample project ële, the
class deënition in RootViewController.h looks similar to the following:

@interface RootViewController : UITableViewController

Simply modify the deënition in the following way:

@interface RootViewController : UITableViewController <TGAccessoryDelegate>

As a requisite of supporting the TGAccessoryDelegate protocol, the dataRecieved: method must
be implemented. In the header (.h) ële, add the following method deënition:

- (void)dataReceived:(NSDictionary *)data;

And in the implementation (.m) ële, implement the method. A few NSLog calls are provided as a
trivial example of accessing the data parameter. Check the thinkgear_ios_api_reference for a full
list of the supported keys.

- (void)dataReceived:(NSDictionary *)data {
NSLog(@"Data received!");
NSLog(@"Raw: %d", [[data valueForKey:@"raw"] intValue]);
NSLog(@"Attention: %d", [[data valueForKey:@"eSenseAttention"] intValue]);

}

Handling Accesssory Connection and Disconnection
e TGAccessoryDelegate protocol also speciëes two optional methods for the delegate object to
handle accessory connection and disconnection — accessoryDidConnect: and accessoryDid-
Disconnect. Add the following method deënitions to the header ële:

- (void)accessoryDidConnect:(EAAccessory *)accessory;
- (void)accessoryDidDisconnect;

In the implementation ële, implement these methods:

- (void)accessoryDidConnect:(EAAccessory *)accessory {
NSLog(@"%@ was connected to this device.", [accessory name]);

}

- (void)accessoryDidDisconnect {
NSLog(@"An accessory was disconnected.");

}

Starting the Data Stream
When your application is ready to receive the headset data, call the startStream method in TGAc-
cessoryManager. In the sample project, this is done in the viewWillAppear: method. It is advis-
able to check whether an accessory was found by the TGAccessoryManager before starting the data
stream:

if([[TGAccessoryManager sharedTGAccessoryManager] accessory] != nil)
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

Handling Data Receipt
November 12, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

4

http://www.neurosky.com

Section 6 – Using Apple's External Accessories APIs

You will also need a matching call to stopStream in the viewWillDisappear: method. Again, it
is advisable to make sure that a data stream is connected and active before closing it:

if([[TGAccessoryManager sharedTGAccessoryManager] connected])
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

Application lifecycle
On devices that support multitasking, your application should expect the following behavior:

• Upon entering the background, accessoryDidDisconnect: will be called.

• Upon returning from the background, accessoryDidConnect: will be called.

Your application must restart the data stream when resuming from the background. For example:

- (void)accessoryDidConnect:(EAAccessory *)accessory {
[[TGAccessoryManager sharedTGAccessoryManager] startStream];

}

Before your application is terminated, you must stop the manager if you have not done so already.

- (void)applicationWillTerminate:(UIApplication *)application {
[[TGAccessoryManager sharedTGAccessoryManager] teardownManager];

}

Log messages
e TGAccessory library will emit some debug messages through NSLog() to help you develop and
debug your application. ese messages will be preëxed with "TGAccessory:" .

Further Considerations
• e application should not expect there to be a inkGear accessory attached to the iOS-based
device on startup. As such, it should handle that case accordingly (e.g. by displaying a static
splash screen prompting the user to connect a inkGear accessory).

Using Apple's External Accessories APIs

If you need ëner-grained control over external accessory management or data stream handling, you
can use Apple's External Accessories API.

Configuring Your Environment
You'll ërst need to add the External Accessory framework to your Xcode project. See the previous
section about conëguring your environment on how to add the ExternalAccessory.framework.

Enumerating Connected Accessories
Retrieving a list of the accessories currently connected to the device simply requires the following code:

NSArray * accessories = [[EAAccessoryManager sharedAccessoryManager] connectedAccessories];

Application lifecycle
November 12, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

5

http://www.neurosky.com

Section 6 – Using Apple's External Accessories APIs

You can then iterate over the resulting NSArray and process the accessories; to look for accessories
supporting a particular protocol string, for example, you would do the following:

for(EAAccessory * accessory in accessories){
if([[accessory protocolStrings] containsObject:@"com.neurosky.thinkgear"]){

// do some stuff here
}

}

Connecting to an Accessory
Once you've decided on an accessory to connect to, youmust create an EASession instance and set up
the NSInputStream and NSOutputStream instances. is requires knowledge of the speciëc protocol
with which you use to communicate with the accessory. For example, using the com.neurosky.thinkgear
protocol:

EASession * session = [[EASession alloc] initWithAccessory:accessory
forProtocol:@"com.neurosky.thinkgear"];

if(session){
// data stream from the accessory
[[session inputStream] setDelegate:self];
[[session inputStream] scheduleInRunLoop:[NSRunLoop currentRunLoop]

forMode:NSDefaultRunLoopMode];
[[session inputStream] open];

// data stream to the accessory
[[session outputStream] setDelegate:self];
[[session outputStream] scheduleInRunLoop:[NSRunLoop currentRunLoop]

forMode:NSDefaultRunLoopMode];
[[session outputStream] open];

}

e delegate object for the inputStream and outputStream instances must then implement the
delegate method:

// Handle communications from the streams.
- (void)stream:(NSStream*)theStream handleEvent:(NSStreamEvent)streamEvent {

switch(streamEvent){
case NSStreamHasBytesAvailable:

// Process the incoming stream data.
break;

case NSStreamEventHasSpaceAvailable:
// Send the next queued command.
break;

default:
break;

}
}

Register for Accessory Notifications
To receive notiëcations that an accessory has connected or disconnected, you must register for ac-
cessory notiëcations. Generally, it is recommended to do this as early in the application lifetime as

Connecting to an Accessory
November 12, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

6

http://www.neurosky.com

Section 6 – Using Apple's External Accessories APIs

possible, so this is typically done in the applicationDidFinishLaunching: method in the appli-
cation delegate class:

[[EAAccessoryManager sharedAccessoryManager] registerForLocalNotifications];

It is also prudent to unregister for accessory notiëcations before the application quits. is should
be done as late in the application lifetime as possible, ideally in the applicationWillTerminate:
method.

[[EAAccessoryManager sharedAccessoryManager] unregisterForLocalNotifications];

Once you've let the system know you're interested in accessory notiëcations, you must write code to
handle them.

Handling Connection Events
To handle events that are ëred when an accessory is connected, you must register a method to handle
the EAAccessoryDidConnectNotification event.

[[NSNotificationCenter defaultCenter] addObserver: self
selector: @selector(accessoryConnected:)

name: EAAccessoryDidConnectNotification
object: nil];

Note that the observer of the event is a method called accessoryConnected: on the self instance;
we must now create this method. is method can also include code that only handles accessories that
support the com.neurosky.thinkgear protocol:

- (void)accessoryConnected:(NSNotification *)notification {
// the accessory can be retrieved by using the EAAccessoryKey key in the userInfo dictionary
EAAccessory * accessory = [[notification userInfo] objectForKey:@"EAAccessoryKey"];

if([[accessory protocolStrings] containsObject:@"com.neurosky.thinkgear"]){
// do some stuff to handle a headset connection event here

}
}

Handling Disconnection Events
You must ërst specify a delegate class to handle the disconnection events. e delegate class must
implement the EAAccessoryDelegate protocol, which entails adding the accessoryDidDiscon-
nect: method in your delegate class:

- (void)accessoryDidDisconnect:(EAAccessory *)accessory {
// do some stuff to handle the accessory disconnection event...

}

Disconnection event delegates are speciëed for each individual accessory, rather than via a global han-
dler. We can conveniently expand the accessoryConnected: code written in the previous section
to also assign a delegate for the accessory:

- (void)accessoryConnected:(NSNotification *)notification {
// the accessory can be retrieved by using the EAAccessoryKey key in the userInfo dictionary
EAAccessory * accessory = [[notification userInfo] objectForKey:@"EAAccessoryKey"];

Handling Connection Events
November 12, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

7

http://www.neurosky.com

Section 7 – References

if([[accessory protocolStrings] containsObject:@"com.neurosky.thinkgear"]){
// do some stuff to handle the headset connection event here...

// now assign a delegate to the accessory to handle disconnection events
[accessory setDelegate:self];

}
}

is will call the accessoryDidDisconnect: method when that particular accessory disconnects.

References

• Communicating with External Accessories (Apple documentation)

• EAAccessoryManager Class Reference

• EAAccessory Class Reference

• EASession Class Reference

November 12, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.
8

http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedFeatures/AdvancedFeatures.html#//apple_ref/doc/uid/TP40007072-CH14-SW20
http://developer.apple.com/iPhone/library/documentation/ExternalAccessory/Reference/EAAccessoryManager_class/Reference/Reference.html
http://developer.apple.com/iPhone/library/documentation/ExternalAccessory/Reference/EAAccessory_class/Reference/Reference.html#//apple_ref/occ/cl/EAAccessory
http://developer.apple.com/iphone/library/documentation/ExternalAccessory/Reference/EASession_class/Reference/Reference.html
http://www.neurosky.com

Corporate Address
NeuroSky, Inc.
125 S. Market St., Ste. 900
San Jose, CA 95113
United States
(408) 600-0129

Questions/Support: http://support.neurosky.com
or email: support@neurosky.com

Community Forum: http://developer.neurosky.com/forum

Information in this document is subject to change with-
out notice.

Reproduction in anymanner whatsoever without the writ-
ten permission of NeuroSky Inc. is strictly forbidden.
Trademarks used in this text: eSense™,inkGear™,Mind-
Kit™, NeuroBoy™andNeuroSky®are trademarks ofNeuroSky,
Inc.

Disclaimer: e information in this document is provided
in connectionwithNeuroSky products. No license, express
or implied, by estoppels or otherwise, to any intellectual
property rights is granted by this document or in connec-
tionwith the sale ofNeuroSky products. NeuroSky assumes
no liability whatsoever and disclaims any express, implied
or statutory warranty relating to its products including,
but not limited to, the implied warranty of merchantabil-
ity, ëtness for a particular purpose, or non-infringement.
In no even shall NeuroSky be liable for any direct, indi-
rect, consequential, punitive, special or incidental damages
(including, without limitation, damages for loss of prof-
its, business interruption, or loss of information) arising
out of the use of inability to use this document, even
if NeuroSky has been advised of the possibility of such
damages. NeuroSkymakes no representations or warranties
with respect to the accuracy or completeness of the contents
of this document and reserves the right tomake changes to
speciëcations and product descriptions at any time with-
out notice. NeuroSky does not make any commitment
to update the information contained herein. NeuroSky’s
products are not intended, authorized, or warranted for
use as components in applications intended to support or
sustain life.

http://support.neurosky.com
mailto:support@neurosky.com
http://developer.neurosky.com/forum

	Features
	Introduction
	SDK Bugs and Issues
	Hardware
	Using the ThinkGear iOS API
	Configuring Your Environment
	Setting Up the TGAccessoryManager
	Handling Data Receipt
	Handling Accesssory Connection and Disconnection
	Starting the Data Stream
	Application lifecycle
	Log messages
	Further Considerations

	Using Apple's External Accessories APIs
	Configuring Your Environment
	Enumerating Connected Accessories
	Connecting to an Accessory
	Register for Accessory Notifications
	Handling Connection Events
	Handling Disconnection Events

	References

