
NS0601 Application Note November 6, 2009

Using the ThinkGear Native Library in
Unity

Features

• Step-by-step guide to integrate brainwave-sensing functionality into your Unity-based game

• A downloadable sample Unity project that demonstrates a simple implementation

• Develop and deploy inkGear-enabled applications on both Mac and PC

Introduction

Unity has gained considerable traction for being an incredibly easy-to-use, yet powerful game develop-
ment tool. NeuroSky's MindKit ships ready out-of-the-box to work with both Mac and PC versions
of Unity. Using the inkGear software library in the MindKit, a developer using Unity can easily
integrate brainwave-sensing functionality into their Unity projects. is application note will walk
you through this procedure.

Important: Because utilization of the inkGear native library relies on Unity's plugin functionality,
you must have Unity Pro. Furthermore, Unity restricts plugin functionality to standalone builds of
the player, so projects built for the Web Player will not be able to use the inkGear library.

A developer can work around these restrictions by utilizing the inkGear Socket Protocol (via the
inkGear Connector) rather than theinkGear native library. is method requires the installation
of daemon software on the user's computer, but allows more restrictive languages and frameworks to
integrate brainwave-reading functionality.

Setting Up

Before dropping the inkGear library binaries into your Unity project, make sure that your project
is set up to accept plugins. Unity expects all plugins to be placed in a Plugins folder in the root level
of your project folder, so if the folder isn't already there, create it.

On the MDT CD, there is a develop directory that contains the requisite libraries and sample code
— we're interested in the content inside develop/macosx and develop/win32. Copy the following
ëles into the Plugins folder in your Unity project:

• develop/macosx/ThinkGearBundle.bundle—Mac inkGear library

• develop/win32/thinkgear.dll— PCinkGear library

• develop/win32/ThinkGear.cs—C# wrapper script



Section 4 – Using ThinkGear

Unity assumes a consistent naming scheme across Mac and PC versions of a plugin, so some quick
renaming is in order:

• Rename ThinkGearBundle.bundle to ThinkGear.bundle

• Rename thinkgear.dll to ThinkGear.dll

By now, the Project panel in your Unity project should look something like Figure 1.

Figure 1: Unity project panel

Using ThinkGear

e ThinkGear.cs wrapper essentially imports all of the inkGear functions exposed in the library
as static ThinkGear class methods. By virtue of being in the Plugins directory, Unity makes this
class available at runtime so you can invoke the static methods directly without having to drop it into
a GameObject.

Both the inkGear API documentation (included on the MDT CD) and the ThinkGear.cs ële
contain descriptions of the various functions available to you, so you should browse through those to
get a feel for the API. In general, though, the control ìow for the function calls is as shown in Figure
2.

Figure 2: inkGear control ìow

November 6, 2009 | © 2009 NeuroSky, Inc. All Rights Reserved.
2

http://www.neurosky.com


Section 4 – Using ThinkGear

Connecting
Establishing a connection via the inkGear library involves the ërst two blocks of the control ìow
diagram shown in Figure 3.

Figure 3: Connection ìow

For the most part, the connection code is fairly straightforward:

// generate a handle to a ThinkGear connection
int handleID = ThinkGear.TG_GetNewConnectionId();

// perform the actual connection
int connectStatus = ThinkGear.TG_Connect(handleID,

"/dev/tty.MindSet",
ThinkGear.BAUD_9600,
ThinkGear.STREAM_PAKCETS);

However, we also need to make sure that the data coming back from the headset is valid. is is done
by idling for a period of time, until we know a functional MindSet would deínitely have returned
valid data:

if(connectStatus >= 0){
// sleep for 1.5 seconds
yield return new WaitForSeconds(1.5f);

// read all of the data in the buffer
int packetCount = ThinkGear.TG_ReadPackets(handleID, -1);

// we've received some data, thus we've connected to a valid headset
if(packetCount > 0){

// implement some behavior here
}
// no valid headset data received, so close the connection
else {

...

ThinkGear.TG_FreeConnection(handleID);
}

}
else {

// the connection attempt was unsuccessful
ThinkGear.TG_FreeConnection(handleID);

}

Note: e MindSet, in its standard conëguration, transmits brainwave data every second. us, an
idle period of 1.5s is a sufficient amount of time to wait before checking on the data received.

Connecting
November 6, 2009 | © 2009 NeuroSky, Inc. All Rights Reserved.

3

http://www.neurosky.com


Section 4 – Using ThinkGear

Reading Data
Reading data involves the third and fourth blocks in the control ìow diagram shown in Figure 4.

Figure 4: Data reading ìow

It involves a continuously running loop, consisting of:

• A single TG_ReadPackets() call, which parses packet data from the buffer and then validates
it

• Multiple TG_GetDataValue() calls, which returns interpreted data from these packets

In Unity, this is best achieved by using the InvokeRepeating()method, which continuously calls a
named method at speciëc intervals. Since the headset broadcasts data at 1Hz, using a callback interval
of 1s is appropriate.

In the code sample in the Connecting section, there was an if statement that checked whether the
headset connection was successful. It makes sense for the InvokeRepeating() to be placed in this
statement:

// we've received some data, thus we've connected to a valid headset
if(packetCount > 0){

InvokeRepeating("UpdateHeadsetData", 0.0f, 1.0f);
}

We'll also need to deëne the callback method:

// Repeating callback method to retrieve data from the headset
void UpdateHeadsetData(){

int packetCount = ThinkGear.TG_ReadPackets(handleID, -1);

if(packetCount > 0){
float attention = ThinkGear.TG_GetDataValue(handleID,

ThinkGear.DATA_ATTENTION);

float meditation = ThinkGear.TG_GetDataValue(handleID,
ThinkGear.DATA_MEDITATION);

...
}

}

From here, it is up to your application to do something meaningful with the brainwave data received
from the headset.

Disconnecting
Disconnecting from the headset involves the last two blocks in the control ìow diagram shown in
Figure 5.

Reading Data
November 6, 2009 | © 2009 NeuroSky, Inc. All Rights Reserved.

4

http://www.neurosky.com


Section 5 – Sample Project

Figure 5: Disconnection ìow

It involves a simple:

ThinkGear.TG_Disconnect(handleID);
ThinkGear.TG_FreeConnection(handleID);

In general, though, one can simply call:

ThinkGear.TG_FreeConnection(handleID);

e TG_FreeConnection() function implicitly calls TG_Disconnect(). TG_Disconnect() is only
really useful if you want to retain the assigned inkGear handle for reuse.

Sample Project

e sample Unity project demonstrates a simple application that lets a user connect to the headset and
view the data being transmitted by it. It involves a simple GUI for handling user input and output,
and a controller that handles data ìow between the GUI and the inkGear.

e controller — ThinkGearController—was designed around an event-driven mechanism, so it
sends and receives messages to query or change the state of the headset. e implementation largely
follows the code samples above, save for a few trivial differences. For the most part, you can drop this
controller class into your Unity project and set up your MonoBehaviour instances to trigger and listen
to its events.

Note: Keep in mind that there is a fair amount of overhead to SendMessage() calls. ThinkGearCon-
troller uses SendMessage() to send events to all GameObject instances in the scene, so this may
impose a fairly hefty performance hit if you have a large project.

If performance is a huge concern, a polling-based mechanism (where the ThinkGearController
maintains state, and another MonoBehaviour continuously polls the ThinkGearController in-
stance for state changes) should prove to be far more efficient and scalable.

Alternatively, you can modify the TriggerEvent()method to restrict the scope of its message send-
ing, by invoking SendMessage() or BroadcastMessage() only on the local GO instance (i.e.
gameObject.SendMessage("SomeEvent")).

e events that ThinkGearController utilizes or recognizes are as follows:

November 6, 2009 | © 2009 NeuroSky, Inc. All Rights Reserved.
5

http://www.neurosky.com


Section 6 – Other Niceties

Received and Handled Events

Event name Parameters Description
OnHeadsetConnectionRequest()None Initiate a headset connection request
OnHeadsetDisconnectionRequest()None Initiate a headset disconnection request

Broadcasted Events

Event name Parameters Description
OnHeadsetConnected() None Broadcast when the headset

has successfully connected
OnHeadsetDisconnected() None Broadcast when the headset

has successfully disconnected
OnHeadsetDataReceived() Hashtable data Broadcast when data is re-

ceived from the headset
OnHeadsetConnectionError()None Broadcast when a connection

attempt was unsuccessful

Other Niceties

e sample Unity project implements the bare essentials to enable MindSet connectivity. For a
customer-facing application, considerations should be made to improve the user experience.

Auto-connect on Startup
To save the user the task of having to explicitly connect to the headset, the application can, on startup,
automatically connect to the last seen headset. In Unity, this is simply a matter of storing and loading
the last-used serial port via a PlayerPrefs parameter, and then connecting to the headset in the
Start() method of a MonoBehaviour.

Port scanning
e application can implement logic to perform a port scan of available serial ports, saving the user
from having to type one in. is is useful in Windows, where serial ports are consistently named (e.g.
COM1 to COMxx), though not so much in OS X, where serial ports are arbitrarily named.

Important: In Windows, COM port names should have a \\.\ prepended to them. It is a required
preëx for addressing serial ports above COM9, but is optional otherwise. Read this MSDN document
for more details.

Received and Handled Events
November 6, 2009 | © 2009 NeuroSky, Inc. All Rights Reserved.

6

http://msdn.microsoft.com/en-us/library/aa365247.aspx
http://www.neurosky.com


Section 8 – References

Auto-disconnect
e headset doesn't do any connection cleanup on power-down, so if a user turns off the headset
while the software still has an open connection, the software may end up in an inconsistent state. It is
prudent to continuously check that the headset is still receiving data, and to timeout the connection
if data hasn't been received in a period of time (generally 3s or so).

Conclusion

After reading this document, you should have a good idea on how to integrate brainwave-sensing
functionality into your Unity project. e sample Unity project offers a quick-start foundation on
which to build yourinkGear-enabled games, and the feature suggestions offered towards the end of
this document should get you thinking about the sorts of usability improvements that could be made.

References

• Unity Pro plugin documentation

Auto-disconnect
November 6, 2009 | © 2009 NeuroSky, Inc. All Rights Reserved.

7

http://unity3d.com/support/documentation/Manual/Plugins.html
http://www.neurosky.com


Corporate Address
NeuroSky, Inc.
125 S. Market St., Ste. 900
San Jose, CA 95113
United States
(408) 600-0129

Questions/Support: http://support.neurosky.com
or email: support@neurosky.com

Community Forum: http://developer.neurosky.com/forum

Information in this document is subject to change with-
out notice.

Reproduction in anymanner whatsoever without the writ-
ten permission of NeuroSky Inc. is strictly forbidden.
Trademarks used in this text: eSense™,inkGear™,Mind-
Kit™, NeuroBoy™andNeuroSky®are trademarks ofNeuroSky,
Inc.

Disclaimer: e information in this document is provided
in connectionwithNeuroSky products. No license, express
or implied, by estoppels or otherwise, to any intellectual
property rights is granted by this document or in connec-
tionwith the sale ofNeuroSky products. NeuroSky assumes
no liability whatsoever and disclaims any express, implied
or statutory warranty relating to its products including,
but not limited to, the implied warranty of merchantabil-
ity, ëtness for a particular purpose, or non-infringement.
In no even shall NeuroSky be liable for any direct, indi-
rect, consequential, punitive, special or incidental damages
(including, without limitation, damages for loss of prof-
its, business interruption, or loss of information) arising
out of the use of inability to use this document, even
if NeuroSky has been advised of the possibility of such
damages. NeuroSkymakes no representations or warranties
with respect to the accuracy or completeness of the contents
of this document and reserves the right tomake changes to
speciëcations and product descriptions at any time with-
out notice. NeuroSky does not make any commitment
to update the information contained herein. NeuroSky’s
products are not intended, authorized, or warranted for
use as components in applications intended to support or
sustain life.

http://support.neurosky.com
mailto:support@neurosky.com
http://developer.neurosky.com/forum

	Features
	Introduction
	Setting Up
	Using ThinkGear
	Connecting
	Reading Data
	Disconnecting

	Sample Project
	Received and Handled Events
	Broadcasted Events

	Other Niceties
	Auto-connect on Startup
	Port scanning
	Auto-disconnect

	Conclusion
	References

